aboutsummaryrefslogtreecommitdiffstats
path: root/src/java/org/apache/poi/poifs/crypt/CryptoFunctions.java
blob: e305376904ddc0799d736086c1ececf1302ec63e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* ====================================================================
   Licensed to the Apache Software Foundation (ASF) under one or more
   contributor license agreements.  See the NOTICE file distributed with
   this work for additional information regarding copyright ownership.
   The ASF licenses this file to You under the Apache License, Version 2.0
   (the "License"); you may not use this file except in compliance with
   the License.  You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
==================================================================== */
package org.apache.poi.poifs.crypt;

import java.nio.charset.Charset;
import java.security.DigestException;
import java.security.GeneralSecurityException;
import java.security.Key;
import java.security.MessageDigest;
import java.security.Provider;
import java.security.Security;
import java.security.spec.AlgorithmParameterSpec;
import java.util.Arrays;
import java.util.Locale;

import javax.crypto.Cipher;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.RC2ParameterSpec;

import org.apache.poi.EncryptedDocumentException;
import org.apache.poi.util.Internal;
import org.apache.poi.util.LittleEndian;
import org.apache.poi.util.LittleEndianConsts;
import org.apache.poi.util.StringUtil;

/**
 * Helper functions used for standard and agile encryption
 */
@Internal
public class CryptoFunctions {
    /**
     * <p><cite>2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption)<br>
     * 2.3.4.11 Encryption Key Generation (Agile Encryption)</cite></p>
     * 
     * <p>The encryption key for ECMA-376 document encryption [ECMA-376] using agile
     * encryption MUST be generated by using the following method, which is derived from PKCS #5:
     * <a href="https://www.ietf.org/rfc/rfc2898.txt">Password-Based Cryptography Version 2.0 [RFC2898]</a>.</p>
     * 
     * <p>Let H() be a hashing algorithm as determined by the PasswordKeyEncryptor.hashAlgorithm
     * element, H_n be the hash data of the n-th iteration, and a plus sign (+) represent concatenation.
     * The password MUST be provided as an array of Unicode characters. Limitations on the length of the
     * password and the characters used by the password are implementation-dependent.
     * The initial password hash is generated as follows:</p>
     * 
     * 
     * <pre>H_0 = H(salt + password)</pre>
     * 
     * <p>The salt used MUST be generated randomly. The salt MUST be stored in the
     * PasswordKeyEncryptor.saltValue element contained within the \EncryptionInfo stream as
     * specified in section 2.3.4.10. The hash is then iterated by using the following approach:</p>
     * 
     * <pre>H_n = H(iterator + H_n-1)</pre>
     * 
     * <p>where iterator is an unsigned 32-bit value that is initially set to 0x00000000 and then incremented
     * monotonically on each iteration until PasswordKey.spinCount iterations have been performed.
     * The value of iterator on the last iteration MUST be one less than PasswordKey.spinCount.</p>
     * 
     * <p>For POI, H_final will be calculated by {@link #generateKey(byte[],HashAlgorithm,byte[],int)}</p>
     *
     * @param password
     * @param hashAlgorithm
     * @param salt
     * @param spinCount
     * @return the hashed password
     */
    public static byte[] hashPassword(String password, HashAlgorithm hashAlgorithm, byte salt[], int spinCount) {
        return hashPassword(password, hashAlgorithm, salt, spinCount, true);
    }
        
    /**
     * Generalized method for read and write protection hash generation.
     * The difference is, read protection uses the order iterator then hash in the hash loop, whereas write protection
     * uses first the last hash value and then the current iterator value
     *
     * @param password
     * @param hashAlgorithm
     * @param salt
     * @param spinCount
     * @param iteratorFirst if true, the iterator is hashed before the n-1 hash value,
     *        if false the n-1 hash value is applied first
     * @return the hashed password
     */
    public static byte[] hashPassword(String password, HashAlgorithm hashAlgorithm, byte salt[], int spinCount, boolean iteratorFirst) {
        // If no password was given, use the default
        if (password == null) {
            password = Decryptor.DEFAULT_PASSWORD;
        }
        
        MessageDigest hashAlg = getMessageDigest(hashAlgorithm);
        
        hashAlg.update(salt);
        byte[] hash = hashAlg.digest(StringUtil.getToUnicodeLE(password));
        byte[] iterator = new byte[LittleEndianConsts.INT_SIZE];

        byte[] first = (iteratorFirst ? iterator : hash);
        byte[] second = (iteratorFirst ? hash : iterator);
        
        try {
            for (int i = 0; i < spinCount; i++) {
                LittleEndian.putInt(iterator, 0, i);
                hashAlg.reset();
                hashAlg.update(first);
                hashAlg.update(second);
                hashAlg.digest(hash, 0, hash.length); // don't create hash buffer everytime new
            }
        } catch (DigestException e) {
            throw new EncryptedDocumentException("error in password hashing");
        }
        
        return hash;
    }    

    /**
     * <p><cite>2.3.4.12 Initialization Vector Generation (Agile Encryption)</cite></p>
     * 
     * <p>Initialization vectors are used in all cases for agile encryption. An initialization vector MUST be
     * generated by using the following method, where H() is a hash function that MUST be the same as
     * specified in section 2.3.4.11 and a plus sign (+) represents concatenation:</p>
     * <ul>
     * <li>If a blockKey is provided, let IV be a hash of the KeySalt and the following value:<br>
     *     {@code blockKey: IV = H(KeySalt + blockKey)}</li>
     * <li>If a blockKey is not provided, let IV be equal to the following value:<br>
     *     {@code KeySalt:IV = KeySalt}</li>
     * <li>If the number of bytes in the value of IV is less than the the value of the blockSize attribute
     *     corresponding to the cipherAlgorithm attribute, pad the array of bytes by appending 0x36 until
     *     the array is blockSize bytes. If the array of bytes is larger than blockSize bytes, truncate the
     *     array to blockSize bytes.</li>
     * </ul> 
     **/
    public static byte[] generateIv(HashAlgorithm hashAlgorithm, byte[] salt, byte[] blockKey, int blockSize) {
        byte iv[] = salt;
        if (blockKey != null) {
            MessageDigest hashAlgo = getMessageDigest(hashAlgorithm);
            hashAlgo.update(salt);
            iv = hashAlgo.digest(blockKey);
        }
        return getBlock36(iv, blockSize);
    }

    /**
     * <p><cite>2.3.4.11 Encryption Key Generation (Agile Encryption)</cite></p>
     * 
     * <p>The final hash data that is used for an encryption key is then generated by using the following
     * method:</p>
     * 
     * <pre>H_final = H(H_n + blockKey)</pre>
     * 
     * <p>where blockKey represents an array of bytes used to prevent two different blocks from encrypting
     * to the same cipher text.</p>
     * 
     * <p>If the size of the resulting H_final is smaller than that of PasswordKeyEncryptor.keyBits, the key
     * MUST be padded by appending bytes with a value of 0x36. If the hash value is larger in size than
     * PasswordKeyEncryptor.keyBits, the key is obtained by truncating the hash value.</p> 
     *
     * @param passwordHash
     * @param hashAlgorithm
     * @param blockKey
     * @param keySize
     * @return intermediate key
     */
    public static byte[] generateKey(byte[] passwordHash, HashAlgorithm hashAlgorithm, byte[] blockKey, int keySize) {
        MessageDigest hashAlgo = getMessageDigest(hashAlgorithm);
        hashAlgo.update(passwordHash);
        byte[] key = hashAlgo.digest(blockKey);
        return getBlock36(key, keySize);
    }

    /**
     * Initialize a new cipher object with the given cipher properties and no padding
     * If the given algorithm is not implemented in the JCE, it will try to load it from the bouncy castle
     * provider.
     *
     * @param key the secret key
     * @param cipherAlgorithm the cipher algorithm
     * @param chain the chaining mode
     * @param vec the initialization vector (IV), can be null
     * @param cipherMode Cipher.DECRYPT_MODE or Cipher.ENCRYPT_MODE
     * @return the requested cipher
     * @throws GeneralSecurityException
     * @throws EncryptedDocumentException if the initialization failed or if an algorithm was specified,
     *   which depends on a missing bouncy castle provider 
     */
    public static Cipher getCipher(SecretKey key, CipherAlgorithm cipherAlgorithm, ChainingMode chain, byte[] vec, int cipherMode) {
        return getCipher(key, cipherAlgorithm, chain, vec, cipherMode, null);
    }

    /**
     * Initialize a new cipher object with the given cipher properties
     * If the given algorithm is not implemented in the JCE, it will try to load it from the bouncy castle
     * provider.
     *
     * @param key the secret key
     * @param cipherAlgorithm the cipher algorithm
     * @param chain the chaining mode
     * @param vec the initialization vector (IV), can be null
     * @param cipherMode Cipher.DECRYPT_MODE or Cipher.ENCRYPT_MODE
     * @param padding the padding (null = NOPADDING, ANSIX923Padding, PKCS5Padding, PKCS7Padding, ISO10126Padding, ...)
     * @return the requested cipher
     * @throws GeneralSecurityException
     * @throws EncryptedDocumentException if the initialization failed or if an algorithm was specified,
     *   which depends on a missing bouncy castle provider 
     */
    public static Cipher getCipher(Key key, CipherAlgorithm cipherAlgorithm, ChainingMode chain, byte[] vec, int cipherMode, String padding) {
        int keySizeInBytes = key.getEncoded().length;
        if (padding == null) padding = "NoPadding";
        
        try {
            // Ensure the JCE policies files allow for this sized key
            if (Cipher.getMaxAllowedKeyLength(cipherAlgorithm.jceId) < keySizeInBytes*8) {
                throw new EncryptedDocumentException("Export Restrictions in place - please install JCE Unlimited Strength Jurisdiction Policy files");
            }

            Cipher cipher;
            if (cipherAlgorithm == CipherAlgorithm.rc4) {
                cipher = Cipher.getInstance(cipherAlgorithm.jceId);
            } else if (cipherAlgorithm.needsBouncyCastle) {
                registerBouncyCastle();
                cipher = Cipher.getInstance(cipherAlgorithm.jceId + "/" + chain.jceId + "/" + padding, "BC");
            } else {
                cipher = Cipher.getInstance(cipherAlgorithm.jceId + "/" + chain.jceId + "/" + padding);
            }
            
            if (vec == null) {
                cipher.init(cipherMode, key);
            } else {
                AlgorithmParameterSpec aps;
                if (cipherAlgorithm == CipherAlgorithm.rc2) {
                    aps = new RC2ParameterSpec(key.getEncoded().length*8, vec);
                } else {
                    aps = new IvParameterSpec(vec);
                }
                cipher.init(cipherMode, key, aps);
            }
            return cipher;
        } catch (GeneralSecurityException e) {
            throw new EncryptedDocumentException(e);
        }
    }    
    
    /**
     * Returns a new byte array with a truncated to the given size. 
     * If the hash has less then size bytes, it will be filled with 0x36-bytes
     *
     * @param hash the to be truncated/filled hash byte array
     * @param size the size of the returned byte array
     * @return the padded hash
     */
    private static byte[] getBlock36(byte[] hash, int size) {
        return getBlockX(hash, size, (byte)0x36);
    }

    /**
     * Returns a new byte array with a truncated to the given size. 
     * If the hash has less then size bytes, it will be filled with 0-bytes
     *
     * @param hash the to be truncated/filled hash byte array
     * @param size the size of the returned byte array
     * @return the padded hash
     */
    public static byte[] getBlock0(byte[] hash, int size) {
        return getBlockX(hash, size, (byte)0);
    }
    
    private static byte[] getBlockX(byte[] hash, int size, byte fill) {
        if (hash.length == size) return hash;
        
        byte[] result = new byte[size];
        Arrays.fill(result, fill);
        System.arraycopy(hash, 0, result, 0, Math.min(result.length, hash.length));
        return result;
    }
    
    public static MessageDigest getMessageDigest(HashAlgorithm hashAlgorithm) {
        try {
            if (hashAlgorithm.needsBouncyCastle) {
                registerBouncyCastle();
                return MessageDigest.getInstance(hashAlgorithm.jceId, "BC");
            } else {
                return MessageDigest.getInstance(hashAlgorithm.jceId);
            }
        } catch (GeneralSecurityException e) {
            throw new EncryptedDocumentException("hash algo not supported", e);
        }
    }
    
    public static Mac getMac(HashAlgorithm hashAlgorithm) {
        try {
            if (hashAlgorithm.needsBouncyCastle) {
                registerBouncyCastle();
                return Mac.getInstance(hashAlgorithm.jceHmacId, "BC");
            } else {
                return Mac.getInstance(hashAlgorithm.jceHmacId);
            }
        } catch (GeneralSecurityException e) {
            throw new EncryptedDocumentException("hmac algo not supported", e);
        }
    }

    @SuppressWarnings("unchecked")
    public static void registerBouncyCastle() {
        if (Security.getProvider("BC") != null) {
            return;
        }
        
        try {
            ClassLoader cl = Thread.currentThread().getContextClassLoader();
            String bcProviderName = "org.bouncycastle.jce.provider.BouncyCastleProvider";
            Class<Provider> clazz = (Class<Provider>)cl.loadClass(bcProviderName);
            Security.addProvider(clazz.newInstance());
        } catch (Exception e) {
            throw new EncryptedDocumentException("Only the BouncyCastle provider supports your encryption settings - please add it to the classpath.", e);
        }
    }

    private static final int INITIAL_CODE_ARRAY[] = { 
        0xE1F0, 0x1D0F, 0xCC9C, 0x84C0, 0x110C, 0x0E10, 0xF1CE, 
        0x313E, 0x1872, 0xE139, 0xD40F, 0x84F9, 0x280C, 0xA96A, 
        0x4EC3
    };

    private static final byte PAD_ARRAY[] = {
        (byte)0xBB, (byte)0xFF, (byte)0xFF, (byte)0xBA, (byte)0xFF,
        (byte)0xFF, (byte)0xB9, (byte)0x80, (byte)0x00, (byte)0xBE,
        (byte)0x0F, (byte)0x00, (byte)0xBF, (byte)0x0F, (byte)0x00
    };
    
    private static final int ENCRYPTION_MATRIX[][] = {
        /* char 1  */ {0xAEFC, 0x4DD9, 0x9BB2, 0x2745, 0x4E8A, 0x9D14, 0x2A09},
        /* char 2  */ {0x7B61, 0xF6C2, 0xFDA5, 0xEB6B, 0xC6F7, 0x9DCF, 0x2BBF},
        /* char 3  */ {0x4563, 0x8AC6, 0x05AD, 0x0B5A, 0x16B4, 0x2D68, 0x5AD0},
        /* char 4  */ {0x0375, 0x06EA, 0x0DD4, 0x1BA8, 0x3750, 0x6EA0, 0xDD40},
        /* char 5  */ {0xD849, 0xA0B3, 0x5147, 0xA28E, 0x553D, 0xAA7A, 0x44D5},
        /* char 6  */ {0x6F45, 0xDE8A, 0xAD35, 0x4A4B, 0x9496, 0x390D, 0x721A},
        /* char 7  */ {0xEB23, 0xC667, 0x9CEF, 0x29FF, 0x53FE, 0xA7FC, 0x5FD9},
        /* char 8  */ {0x47D3, 0x8FA6, 0x0F6D, 0x1EDA, 0x3DB4, 0x7B68, 0xF6D0},
        /* char 9  */ {0xB861, 0x60E3, 0xC1C6, 0x93AD, 0x377B, 0x6EF6, 0xDDEC},
        /* char 10 */ {0x45A0, 0x8B40, 0x06A1, 0x0D42, 0x1A84, 0x3508, 0x6A10},
        /* char 11 */ {0xAA51, 0x4483, 0x8906, 0x022D, 0x045A, 0x08B4, 0x1168},
        /* char 12 */ {0x76B4, 0xED68, 0xCAF1, 0x85C3, 0x1BA7, 0x374E, 0x6E9C},
        /* char 13 */ {0x3730, 0x6E60, 0xDCC0, 0xA9A1, 0x4363, 0x86C6, 0x1DAD},
        /* char 14 */ {0x3331, 0x6662, 0xCCC4, 0x89A9, 0x0373, 0x06E6, 0x0DCC},
        /* char 15 */ {0x1021, 0x2042, 0x4084, 0x8108, 0x1231, 0x2462, 0x48C4}
    };

    /**
     * Create the verifier for xor obfuscation (method 1)
     *
     * @see <a href="http://msdn.microsoft.com/en-us/library/dd926947.aspx">2.3.7.1 Binary Document Password Verifier Derivation Method 1</a>
     * @see <a href="http://msdn.microsoft.com/en-us/library/dd905229.aspx">2.3.7.4 Binary Document Password Verifier Derivation Method 2</a>
     * @see <a href="http://www.ecma-international.org/news/TC45_current_work/Office Open XML Part 4 - Markup Language Reference.pdf">Part 4 - Markup Language Reference - Ecma International - 3.2.12 fileSharing</a>
     * 
     * @param password the password
     * @return the verifier (actually a short value)
     */
    public static int createXorVerifier1(String password) {
        byte[] arrByteChars = toAnsiPassword(password);
        
        // SET Verifier TO 0x0000
        short verifier = 0;

        if (!"".equals(password)) {
            // FOR EACH PasswordByte IN PasswordArray IN REVERSE ORDER
            for (int i = arrByteChars.length-1; i >= 0; i--) {
                // SET Verifier TO Intermediate3 BITWISE XOR PasswordByte
                verifier = rotateLeftBase15Bit(verifier);
                verifier ^= arrByteChars[i];
            }
    
            // as we haven't prepended the password length into the input array
            // we need to do it now separately ...
            verifier = rotateLeftBase15Bit(verifier);
            verifier ^= arrByteChars.length;
            
            // RETURN Verifier BITWISE XOR 0xCE4B
            verifier ^= 0xCE4B; // (0x8000 | ('N' << 8) | 'K')
        }
        
        return verifier & 0xFFFF;
    }
 
    /**
     * This method generates the xor verifier for word documents &lt; 2007 (method 2).
     * Its output will be used as password input for the newer word generations which
     * utilize a real hashing algorithm like sha1.
     * 
     * @param password the password
     * @return the hashed password
     * 
     * @see <a href="http://msdn.microsoft.com/en-us/library/dd905229.aspx">2.3.7.4 Binary Document Password Verifier Derivation Method 2</a>
     * @see <a href="http://blogs.msdn.com/b/vsod/archive/2010/04/05/how-to-set-the-editing-restrictions-in-word-using-open-xml-sdk-2-0.aspx">How to set the editing restrictions in Word using Open XML SDK 2.0</a>
     * @see <a href="http://www.aspose.com/blogs/aspose-blogs/vladimir-averkin/archive/2007/08/20/funny-how-the-new-powerful-cryptography-implemented-in-word-2007-turns-it-into-a-perfect-tool-for-document-password-removal.html">Funny: How the new powerful cryptography implemented in Word 2007 turns it into a perfect tool for document password removal.</a>
     */
    public static int createXorVerifier2(String password) {
        //Array to hold Key Values
        byte[] generatedKey = new byte[4];

        //Maximum length of the password is 15 chars.
        final int maxPasswordLength = 15; 
        
        if (!"".equals(password)) {
            // Truncate the password to 15 characters
            password = password.substring(0, Math.min(password.length(), maxPasswordLength));

            byte[] arrByteChars = toAnsiPassword(password);
            
            // Compute the high-order word of the new key:

            // --> Initialize from the initial code array (see below), depending on the passwords length. 
            int highOrderWord = INITIAL_CODE_ARRAY[arrByteChars.length - 1];

            // --> For each character in the password:
            //      --> For every bit in the character, starting with the least significant and progressing to (but excluding) 
            //          the most significant, if the bit is set, XOR the keys high-order word with the corresponding word from 
            //          the Encryption Matrix
            for (int i = 0; i < arrByteChars.length; i++) {
                int tmp = maxPasswordLength - arrByteChars.length + i;
                for (int intBit = 0; intBit < 7; intBit++) {
                    if ((arrByteChars[i] & (0x0001 << intBit)) != 0) {
                        highOrderWord ^= ENCRYPTION_MATRIX[tmp][intBit];
                    }
                }
            }
            
            // Compute the low-order word of the new key:
            int verifier = createXorVerifier1(password);

            // The byte order of the result shall be reversed [password "Example": 0x64CEED7E becomes 7EEDCE64],
            // and that value shall be hashed as defined by the attribute values.
            
            LittleEndian.putShort(generatedKey, 0, (short)verifier);
            LittleEndian.putShort(generatedKey, 2, (short)highOrderWord);
        }
        
        return LittleEndian.getInt(generatedKey);
    }

    /**
     * This method generates the xored-hashed password for word documents &lt; 2007.
     */
    public static String xorHashPassword(String password) {
        int hashedPassword = createXorVerifier2(password);
        return String.format(Locale.ROOT, "%1$08X", hashedPassword);
    }
    
    /**
     * Convenience function which returns the reversed xored-hashed password for further 
     * processing in word documents 2007 and newer, which utilize a real hashing algorithm like sha1.
     */
    public static String xorHashPasswordReversed(String password) {
        int hashedPassword = createXorVerifier2(password);
        
        return String.format(Locale.ROOT, "%1$02X%2$02X%3$02X%4$02X"
            , ( hashedPassword >>> 0 ) & 0xFF
            , ( hashedPassword >>> 8 ) & 0xFF
            , ( hashedPassword >>> 16 ) & 0xFF
            , ( hashedPassword >>> 24 ) & 0xFF
        );
    }

    /**
     * Create the xor key for xor obfuscation, which is used to create the xor array (method 1)
     *
     * @see <a href="http://msdn.microsoft.com/en-us/library/dd924704.aspx">2.3.7.2 Binary Document XOR Array Initialization Method 1</a>
     * @see <a href="http://msdn.microsoft.com/en-us/library/dd905229.aspx">2.3.7.4 Binary Document Password Verifier Derivation Method 2</a>
     * 
     * @param password the password
     * @return the xor key
     */
    public static int createXorKey1(String password) {
        // the xor key for method 1 is part of the verifier for method 2
        // so we simply chop it from there
        return createXorVerifier2(password) >>> 16;
    }

    /**
     * Creates an byte array for xor obfuscation (method 1) 
     *
     * @see <a href="http://msdn.microsoft.com/en-us/library/dd924704.aspx">2.3.7.2 Binary Document XOR Array Initialization Method 1</a>
     * @see <a href="http://docs.libreoffice.org/oox/html/binarycodec_8cxx_source.html">Libre Office implementation</a>
     *
     * @param password the password
     * @return the byte array for xor obfuscation
     */
    public static byte[] createXorArray1(String password) {
        if (password.length() > 15) {
            password = password.substring(0, 15);
        }
        byte passBytes[] = password.getBytes(Charset.forName("ASCII"));
        
        // this code is based on the libre office implementation.
        // The MS-OFFCRYPTO misses some infos about the various rotation sizes 
        byte obfuscationArray[] = new byte[16];
        System.arraycopy(passBytes, 0, obfuscationArray, 0, passBytes.length);
        System.arraycopy(PAD_ARRAY, 0, obfuscationArray, passBytes.length, PAD_ARRAY.length-passBytes.length+1);
        
        int xorKey = createXorKey1(password);
        
        // rotation of key values is application dependent - Excel = 2 / Word = 7 
        int nRotateSize = 2;
        
        byte baseKeyLE[] = { (byte)(xorKey & 0xFF), (byte)((xorKey >>> 8) & 0xFF) };
        for (int i=0; i<obfuscationArray.length; i++) {
            obfuscationArray[i] ^= baseKeyLE[i&1];
            obfuscationArray[i] = rotateLeft(obfuscationArray[i], nRotateSize);
        }
        
        return obfuscationArray;
    }
    
    /**
     * The provided Unicode password string is converted to a ANSI string
     *
     * @param password the password
     * @return the ansi bytes
     * 
     * @see <a href="http://www.ecma-international.org/news/TC45_current_work/Office%20Open%20XML%20Part%204%20-%20Markup%20Language%20Reference.pdf">Part 4 - Markup Language Reference - Ecma International - section 3.2.29 (workbookProtection)</a>
     */
    private static byte[] toAnsiPassword(String password) {
        // TODO: charset conversion (see ecma spec) 
        
        // Get the single-byte values by iterating through the Unicode characters.
        // For each character, if the low byte is not equal to 0, take it.
        // Otherwise, take the high byte.
        byte[] arrByteChars = new byte[password.length()];
        
        for (int i = 0; i < password.length(); i++) {
            int intTemp = password.charAt(i);
            byte lowByte = (byte)(intTemp & 0xFF);
            byte highByte = (byte)((intTemp >>> 8) & 0xFF);
            arrByteChars[i] = (lowByte != 0 ? lowByte : highByte);
        }

        return arrByteChars;
    }
    
    private static byte rotateLeft(byte bits, int shift) {
        return (byte)(((bits & 0xff) << shift) | ((bits & 0xff) >>> (8 - shift)));
    }
    
    private static short rotateLeftBase15Bit(short verifier) {
        /*
         * IF (Verifier BITWISE AND 0x4000) is 0x0000
         *    SET Intermediate1 TO 0
         * ELSE
         *    SET Intermediate1 TO 1
         * ENDIF
         */
        short intermediate1 = (short)(((verifier & 0x4000) == 0) ? 0 : 1);
        /*
         *  SET Intermediate2 TO Verifier MULTIPLED BY 2
         *  SET most significant bit of Intermediate2 TO 0
         */
        short intermediate2 = (short)((verifier<<1) & 0x7FFF);
        /*
         *  SET Intermediate3 TO Intermediate1 BITWISE OR Intermediate2
         */
        return (short)(intermediate1 | intermediate2);
    }
}