1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
|
/* ====================================================================
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==================================================================== */
package org.apache.poi.util;
import java.util.*;
/**
* Red-Black tree-based implementation of Map. This class guarantees
* that the map will be in both ascending key order and ascending
* value order, sorted according to the natural order for the key's
* and value's classes.<p>
*
* This Map is intended for applications that need to be able to look
* up a key-value pairing by either key or value, and need to do so
* with equal efficiency.<p>
*
* While that goal could be accomplished by taking a pair of TreeMaps
* and redirecting requests to the appropriate TreeMap (e.g.,
* containsKey would be directed to the TreeMap that maps values to
* keys, containsValue would be directed to the TreeMap that maps keys
* to values), there are problems with that implementation,
* particularly when trying to keep the two TreeMaps synchronized with
* each other. And if the data contained in the TreeMaps is large, the
* cost of redundant storage becomes significant.<p>
*
* This solution keeps the data properly synchronized and minimizes
* the data storage. The red-black algorithm is based on TreeMap's,
* but has been modified to simultaneously map a tree node by key and
* by value. This doubles the cost of put operations (but so does
* using two TreeMaps), and nearly doubles the cost of remove
* operations (there is a savings in that the lookup of the node to be
* removed only has to be performed once). And since only one node
* contains the key and value, storage is significantly less than that
* required by two TreeMaps.<p>
*
* There are some limitations placed on data kept in this Map. The
* biggest one is this:<p>
*
* When performing a put operation, neither the key nor the value may
* already exist in the Map. In the java.util Map implementations
* (HashMap, TreeMap), you can perform a put with an already mapped
* key, and neither cares about duplicate values at all ... but this
* implementation's put method with throw an IllegalArgumentException
* if either the key or the value is already in the Map.<p>
*
* Obviously, that same restriction (and consequence of failing to
* heed that restriction) applies to the putAll method.<p>
*
* The Map.Entry instances returned by the appropriate methods will
* not allow setValue() and will throw an
* UnsupportedOperationException on attempts to call that method.<p>
*
* New methods are added to take advantage of the fact that values are
* kept sorted independently of their keys:<p>
*
* Object getKeyForValue(Object value) is the opposite of get; it
* takes a value and returns its key, if any.<p>
*
* Object removeValue(Object value) finds and removes the specified
* value and returns the now un-used key.<p>
*
* Set entrySetByValue() returns the Map.Entry's in a Set whose
* iterator will iterate over the Map.Entry's in ascending order by
* their corresponding values.<p>
*
* Set keySetByValue() returns the keys in a Set whose iterator will
* iterate over the keys in ascending order by their corresponding
* values.<p>
*
* Collection valuesByValue() returns the values in a Collection whose
* iterator will iterate over the values in ascending order.<p>
*
* @author Marc Johnson (mjohnson at apache dot org)
*/
//for performance
@SuppressWarnings("rawtypes")
public class BinaryTree extends AbstractMap {
final Node[] _root;
int _size = 0;
int _modifications = 0;
private final Set[] _key_set = new Set[] { null, null };
private final Set[] _entry_set = new Set[] { null, null };
private final Collection[] _value_collection = new Collection[] { null, null };
static int _KEY = 0;
static int _VALUE = 1;
private static int _INDEX_SUM = _KEY + _VALUE;
private static int _MINIMUM_INDEX = 0;
private static int _INDEX_COUNT = 2;
private static String[] _data_name = new String[]
{
"key", "value"
};
/**
* Construct a new BinaryTree
*/
public BinaryTree() {
_root = new Node[]{ null, null, };
}
/**
* Constructs a new BinaryTree from an existing Map, with keys and
* values sorted
*
* @param map the map whose mappings are to be placed in this map.
*
* @exception ClassCastException if the keys in the map are not
* Comparable, or are not mutually
* comparable; also if the values in
* the map are not Comparable, or
* are not mutually Comparable
* @exception NullPointerException if any key or value in the map
* is null
* @exception IllegalArgumentException if there are duplicate keys
* or duplicate values in the
* map
*/
public BinaryTree(Map map)
throws ClassCastException, NullPointerException,
IllegalArgumentException
{
this();
putAll(map);
}
/**
* Returns the key to which this map maps the specified value.
* Returns null if the map contains no mapping for this value.
*
* @param value value whose associated key is to be returned.
*
* @return the key to which this map maps the specified value, or
* null if the map contains no mapping for this value.
*
* @exception ClassCastException if the value is of an
* inappropriate type for this map.
* @exception NullPointerException if the value is null
*/
public Object getKeyForValue(Object value)
throws ClassCastException, NullPointerException
{
return doGet(( Comparable ) value, _VALUE);
}
/**
* Removes the mapping for this value from this map if present
*
* @param value value whose mapping is to be removed from the map.
*
* @return previous key associated with specified value, or null
* if there was no mapping for value.
*/
public Object removeValue(Object value)
{
return doRemove(( Comparable ) value, _VALUE);
}
/**
* Returns a set view of the mappings contained in this map. Each
* element in the returned set is a Map.Entry. The set is backed
* by the map, so changes to the map are reflected in the set, and
* vice-versa. If the map is modified while an iteration over the
* set is in progress, the results of the iteration are
* undefined. The set supports element removal, which removes the
* corresponding mapping from the map, via the Iterator.remove,
* Set.remove, removeAll, retainAll and clear operations. It does
* not support the add or addAll operations.<p>
*
* The difference between this method and entrySet is that
* entrySet's iterator() method returns an iterator that iterates
* over the mappings in ascending order by key. This method's
* iterator method iterates over the mappings in ascending order
* by value.
*
* @return a set view of the mappings contained in this map.
*/
public Set entrySetByValue()
{
if (_entry_set[ _VALUE ] == null)
{
_entry_set[ _VALUE ] = new AbstractSet()
{
public Iterator iterator()
{
return new BinaryTreeIterator(_VALUE)
{
protected Object doGetNext()
{
return _last_returned_node;
}
};
}
public boolean contains(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry entry = ( Map.Entry ) o;
Object key = entry.getKey();
Node node = lookup(( Comparable ) entry.getValue(),
_VALUE);
return (node != null) && node.getData(_KEY).equals(key);
}
public boolean remove(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry entry = ( Map.Entry ) o;
Object key = entry.getKey();
Node node = lookup(( Comparable ) entry.getValue(),
_VALUE);
if ((node != null) && node.getData(_KEY).equals(key))
{
doRedBlackDelete(node);
return true;
}
return false;
}
public int size()
{
return BinaryTree.this.size();
}
public void clear()
{
BinaryTree.this.clear();
}
};
}
return _entry_set[ _VALUE ];
}
/**
* Returns a set view of the keys contained in this map. The set
* is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an
* iteration over the set is in progress, the results of the
* iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove, Set.remove, removeAll, retainAll, and clear
* operations. It does not support the add or addAll
* operations.<p>
*
* The difference between this method and keySet is that keySet's
* iterator() method returns an iterator that iterates over the
* keys in ascending order by key. This method's iterator method
* iterates over the keys in ascending order by value.
*
* @return a set view of the keys contained in this map.
*/
public Set keySetByValue()
{
if (_key_set[ _VALUE ] == null)
{
_key_set[ _VALUE ] = new AbstractSet()
{
public Iterator iterator()
{
return new BinaryTreeIterator(_VALUE)
{
protected Object doGetNext()
{
return _last_returned_node.getData(_KEY);
}
};
}
public int size()
{
return BinaryTree.this.size();
}
public boolean contains(Object o)
{
return containsKey(o);
}
public boolean remove(Object o)
{
int old_size = _size;
BinaryTree.this.remove(o);
return _size != old_size;
}
public void clear()
{
BinaryTree.this.clear();
}
};
}
return _key_set[ _VALUE ];
}
/**
* Returns a collection view of the values contained in this
* map. The collection is backed by the map, so changes to the map
* are reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress,
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove,
* Collection.remove, removeAll, retainAll and clear operations.
* It does not support the add or addAll operations.<p>
*
* The difference between this method and values is that values's
* iterator() method returns an iterator that iterates over the
* values in ascending order by key. This method's iterator method
* iterates over the values in ascending order by key.
*
* @return a collection view of the values contained in this map.
*/
public Collection valuesByValue()
{
if (_value_collection[ _VALUE ] == null)
{
_value_collection[ _VALUE ] = new AbstractCollection()
{
public Iterator iterator()
{
return new BinaryTreeIterator(_VALUE)
{
protected Object doGetNext()
{
return _last_returned_node.getData(_VALUE);
}
};
}
public int size()
{
return BinaryTree.this.size();
}
public boolean contains(Object o)
{
return containsValue(o);
}
public boolean remove(Object o)
{
int old_size = _size;
removeValue(o);
return _size != old_size;
}
public boolean removeAll(Collection c)
{
boolean modified = false;
Iterator iter = c.iterator();
while (iter.hasNext())
{
if (removeValue(iter.next()) != null)
{
modified = true;
}
}
return modified;
}
public void clear()
{
BinaryTree.this.clear();
}
};
}
return _value_collection[ _VALUE ];
}
/**
* common remove logic (remove by key or remove by value)
*
* @param o the key, or value, that we're looking for
* @param index _KEY or _VALUE
*
* @return the key, if remove by value, or the value, if remove by
* key. null if the specified key or value could not be
* found
*/
private Object doRemove(Comparable o, int index)
{
Node node = lookup(o, index);
Object rval = null;
if (node != null)
{
rval = node.getData(oppositeIndex(index));
doRedBlackDelete(node);
}
return rval;
}
/**
* common get logic, used to get by key or get by value
*
* @param o the key or value that we're looking for
* @param index _KEY or _VALUE
*
* @return the key (if the value was mapped) or the value (if the
* key was mapped); null if we couldn't find the specified
* object
*/
private Object doGet(Comparable o, int index)
{
checkNonNullComparable(o, index);
Node node = lookup(o, index);
return ((node == null) ? null
: node.getData(oppositeIndex(index)));
}
/**
* Get the opposite index of the specified index
*
* @param index _KEY or _VALUE
*
* @return _VALUE (if _KEY was specified), else _KEY
*/
private int oppositeIndex(int index)
{
// old trick ... to find the opposite of a value, m or n,
// subtract the value from the sum of the two possible
// values. (m + n) - m = n; (m + n) - n = m
return _INDEX_SUM - index;
}
/**
* do the actual lookup of a piece of data
*
* @param data the key or value to be looked up
* @param index _KEY or _VALUE
*
* @return the desired Node, or null if there is no mapping of the
* specified data
*/
public Node lookup(Comparable data, int index)
{
Node rval = null;
Node node = _root[ index ];
while (node != null)
{
int cmp = compare(data, node.getData(index));
if (cmp == 0)
{
rval = node;
break;
}
node = (cmp < 0) ? node.getLeft(index)
: node.getRight(index);
}
return rval;
}
/**
* Compare two objects
*
* @param o1 the first object
* @param o2 the second object
*
* @return negative value if o1 < o2; 0 if o1 == o2; positive
* value if o1 > o2
*/
private static int compare(Comparable o1, Comparable o2)
{
return o1.compareTo(o2);
}
/**
* find the least node from a given node. very useful for starting
* a sorting iterator ...
*
* @param node the node from which we will start searching
* @param index _KEY or _VALUE
*
* @return the smallest node, from the specified node, in the
* specified mapping
*/
static Node leastNode(Node node, int index)
{
Node rval = node;
if (rval != null)
{
while (rval.getLeft(index) != null)
{
rval = rval.getLeft(index);
}
}
return rval;
}
/**
* get the next larger node from the specified node
*
* @param node the node to be searched from
* @param index _KEY or _VALUE
*
* @return the specified node
*/
static Node nextGreater(Node node, int index)
{
Node rval = null;
if (node == null)
{
rval = null;
}
else if (node.getRight(index) != null)
{
// everything to the node's right is larger. The least of
// the right node's descendents is the next larger node
rval = leastNode(node.getRight(index), index);
}
else
{
// traverse up our ancestry until we find an ancestor that
// is null or one whose left child is our ancestor. If we
// find a null, then this node IS the largest node in the
// tree, and there is no greater node. Otherwise, we are
// the largest node in the subtree on that ancestor's left
// ... and that ancestor is the next greatest node
Node parent = node.getParent(index);
Node child = node;
while ((parent != null) && (child == parent.getRight(index)))
{
child = parent;
parent = parent.getParent(index);
}
rval = parent;
}
return rval;
}
/**
* copy the color from one node to another, dealing with the fact
* that one or both nodes may, in fact, be null
*
* @param from the node whose color we're copying; may be null
* @param to the node whose color we're changing; may be null
* @param index _KEY or _VALUE
*/
private static void copyColor(Node from, Node to, int index)
{
if (to != null)
{
if (from == null)
{
// by default, make it black
to.setBlack(index);
}
else
{
to.copyColor(from, index);
}
}
}
/**
* is the specified node red? if the node does not exist, no, it's
* black, thank you
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static boolean isRed(Node node, int index)
{
return node == null ? false : node.isRed(index);
}
/**
* is the specified black red? if the node does not exist, sure,
* it's black, thank you
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static boolean isBlack(Node node, int index)
{
return node == null ? true : node.isBlack(index);
}
/**
* force a node (if it exists) red
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static void makeRed(Node node, int index)
{
if (node != null)
{
node.setRed(index);
}
}
/**
* force a node (if it exists) black
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static void makeBlack(Node node, int index)
{
if (node != null)
{
node.setBlack(index);
}
}
/**
* get a node's grandparent. mind you, the node, its parent, or
* its grandparent may not exist. no problem
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static Node getGrandParent(Node node, int index)
{
return getParent(getParent(node, index), index);
}
/**
* get a node's parent. mind you, the node, or its parent, may not
* exist. no problem
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static Node getParent(Node node, int index)
{
return ((node == null) ? null
: node.getParent(index));
}
/**
* get a node's right child. mind you, the node may not exist. no
* problem
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static Node getRightChild(Node node, int index)
{
return (node == null) ? null
: node.getRight(index);
}
/**
* get a node's left child. mind you, the node may not exist. no
* problem
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static Node getLeftChild(Node node, int index)
{
return (node == null) ? null
: node.getLeft(index);
}
/**
* is this node its parent's left child? mind you, the node, or
* its parent, may not exist. no problem. if the node doesn't
* exist ... it's its non-existent parent's left child. If the
* node does exist but has no parent ... no, we're not the
* non-existent parent's left child. Otherwise (both the specified
* node AND its parent exist), check.
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static boolean isLeftChild(Node node, int index) {
if (node == null) {
return true;
}
if (node.getParent(index) == null) {
return false;
}
return node == node.getParent(index).getLeft(index);
}
/**
* is this node its parent's right child? mind you, the node, or
* its parent, may not exist. no problem. if the node doesn't
* exist ... it's its non-existent parent's right child. If the
* node does exist but has no parent ... no, we're not the
* non-existent parent's right child. Otherwise (both the
* specified node AND its parent exist), check.
*
* @param node the node (may be null) in question
* @param index _KEY or _VALUE
*/
private static boolean isRightChild(Node node, int index)
{
if (node == null) {
return true;
}
if (node.getParent(index) == null) {
return false;
}
return node == node.getParent(index).getRight(index);
}
/**
* do a rotate left. standard fare in the world of balanced trees
*
* @param node the node to be rotated
* @param index _KEY or _VALUE
*/
private void rotateLeft(Node node, int index)
{
Node right_child = node.getRight(index);
node.setRight(right_child.getLeft(index), index);
if (right_child.getLeft(index) != null)
{
right_child.getLeft(index).setParent(node, index);
}
right_child.setParent(node.getParent(index), index);
if (node.getParent(index) == null)
{
// node was the root ... now its right child is the root
_root[ index ] = right_child;
}
else if (node.getParent(index).getLeft(index) == node)
{
node.getParent(index).setLeft(right_child, index);
}
else
{
node.getParent(index).setRight(right_child, index);
}
right_child.setLeft(node, index);
node.setParent(right_child, index);
}
/**
* do a rotate right. standard fare in the world of balanced trees
*
* @param node the node to be rotated
* @param index _KEY or _VALUE
*/
private void rotateRight(Node node, int index)
{
Node left_child = node.getLeft(index);
node.setLeft(left_child.getRight(index), index);
if (left_child.getRight(index) != null)
{
left_child.getRight(index).setParent(node, index);
}
left_child.setParent(node.getParent(index), index);
if (node.getParent(index) == null)
{
// node was the root ... now its left child is the root
_root[ index ] = left_child;
}
else if (node.getParent(index).getRight(index) == node)
{
node.getParent(index).setRight(left_child, index);
}
else
{
node.getParent(index).setLeft(left_child, index);
}
left_child.setRight(node, index);
node.setParent(left_child, index);
}
/**
* complicated red-black insert stuff. Based on Sun's TreeMap
* implementation, though it's barely recognizeable any more
*
* @param inserted_node the node to be inserted
* @param index _KEY or _VALUE
*/
private void doRedBlackInsert(Node inserted_node, int index)
{
Node current_node = inserted_node;
makeRed(current_node, index);
while ((current_node != null) && (current_node != _root[ index ])
&& (isRed(current_node.getParent(index), index)))
{
if (isLeftChild(getParent(current_node, index), index))
{
Node y = getRightChild(getGrandParent(current_node, index),
index);
if (isRed(y, index))
{
makeBlack(getParent(current_node, index), index);
makeBlack(y, index);
makeRed(getGrandParent(current_node, index), index);
current_node = getGrandParent(current_node, index);
}
else
{
if (isRightChild(current_node, index))
{
current_node = getParent(current_node, index);
rotateLeft(current_node, index);
}
makeBlack(getParent(current_node, index), index);
makeRed(getGrandParent(current_node, index), index);
if (getGrandParent(current_node, index) != null)
{
rotateRight(getGrandParent(current_node, index),
index);
}
}
}
else
{
// just like clause above, except swap left for right
Node y = getLeftChild(getGrandParent(current_node, index),
index);
if (isRed(y, index))
{
makeBlack(getParent(current_node, index), index);
makeBlack(y, index);
makeRed(getGrandParent(current_node, index), index);
current_node = getGrandParent(current_node, index);
}
else
{
if (isLeftChild(current_node, index))
{
current_node = getParent(current_node, index);
rotateRight(current_node, index);
}
makeBlack(getParent(current_node, index), index);
makeRed(getGrandParent(current_node, index), index);
if (getGrandParent(current_node, index) != null)
{
rotateLeft(getGrandParent(current_node, index),
index);
}
}
}
}
makeBlack(_root[ index ], index);
}
/**
* complicated red-black delete stuff. Based on Sun's TreeMap
* implementation, though it's barely recognizeable any more
*
* @param deleted_node the node to be deleted
*/
void doRedBlackDelete(Node deleted_node)
{
for (int index = _MINIMUM_INDEX; index < _INDEX_COUNT; index++)
{
// if deleted node has both left and children, swap with
// the next greater node
if ((deleted_node.getLeft(index) != null)
&& (deleted_node.getRight(index) != null))
{
swapPosition(nextGreater(deleted_node, index), deleted_node,
index);
}
Node replacement = ((deleted_node.getLeft(index) != null)
? deleted_node.getLeft(index)
: deleted_node.getRight(index));
if (replacement != null)
{
replacement.setParent(deleted_node.getParent(index), index);
if (deleted_node.getParent(index) == null)
{
_root[ index ] = replacement;
}
else if (deleted_node
== deleted_node.getParent(index).getLeft(index))
{
deleted_node.getParent(index).setLeft(replacement, index);
}
else
{
deleted_node.getParent(index).setRight(replacement,
index);
}
deleted_node.setLeft(null, index);
deleted_node.setRight(null, index);
deleted_node.setParent(null, index);
if (isBlack(deleted_node, index))
{
doRedBlackDeleteFixup(replacement, index);
}
}
else
{
// replacement is null
if (deleted_node.getParent(index) == null)
{
// empty tree
_root[ index ] = null;
}
else
{
// deleted node had no children
if (isBlack(deleted_node, index))
{
doRedBlackDeleteFixup(deleted_node, index);
}
if (deleted_node.getParent(index) != null)
{
if (deleted_node
== deleted_node.getParent(index)
.getLeft(index))
{
deleted_node.getParent(index).setLeft(null,
index);
}
else
{
deleted_node.getParent(index).setRight(null,
index);
}
deleted_node.setParent(null, index);
}
}
}
}
shrink();
}
/**
* complicated red-black delete stuff. Based on Sun's TreeMap
* implementation, though it's barely recognizeable any more. This
* rebalances the tree (somewhat, as red-black trees are not
* perfectly balanced -- perfect balancing takes longer)
*
* @param replacement_node the node being replaced
* @param index _KEY or _VALUE
*/
private void doRedBlackDeleteFixup(Node replacement_node,
int index)
{
Node current_node = replacement_node;
while ((current_node != _root[ index ])
&& (isBlack(current_node, index)))
{
if (isLeftChild(current_node, index))
{
Node sibling_node =
getRightChild(getParent(current_node, index), index);
if (isRed(sibling_node, index))
{
makeBlack(sibling_node, index);
makeRed(getParent(current_node, index), index);
rotateLeft(getParent(current_node, index), index);
sibling_node =
getRightChild(getParent(current_node, index), index);
}
if (isBlack(getLeftChild(sibling_node, index), index)
&& isBlack(getRightChild(sibling_node, index), index))
{
makeRed(sibling_node, index);
current_node = getParent(current_node, index);
}
else
{
if (isBlack(getRightChild(sibling_node, index), index))
{
makeBlack(getLeftChild(sibling_node, index), index);
makeRed(sibling_node, index);
rotateRight(sibling_node, index);
sibling_node =
getRightChild(getParent(current_node, index),
index);
}
copyColor(getParent(current_node, index), sibling_node,
index);
makeBlack(getParent(current_node, index), index);
makeBlack(getRightChild(sibling_node, index), index);
rotateLeft(getParent(current_node, index), index);
current_node = _root[ index ];
}
}
else
{
Node sibling_node =
getLeftChild(getParent(current_node, index), index);
if (isRed(sibling_node, index))
{
makeBlack(sibling_node, index);
makeRed(getParent(current_node, index), index);
rotateRight(getParent(current_node, index), index);
sibling_node =
getLeftChild(getParent(current_node, index), index);
}
if (isBlack(getRightChild(sibling_node, index), index)
&& isBlack(getLeftChild(sibling_node, index), index))
{
makeRed(sibling_node, index);
current_node = getParent(current_node, index);
}
else
{
if (isBlack(getLeftChild(sibling_node, index), index))
{
makeBlack(getRightChild(sibling_node, index), index);
makeRed(sibling_node, index);
rotateLeft(sibling_node, index);
sibling_node =
getLeftChild(getParent(current_node, index),
index);
}
copyColor(getParent(current_node, index), sibling_node,
index);
makeBlack(getParent(current_node, index), index);
makeBlack(getLeftChild(sibling_node, index), index);
rotateRight(getParent(current_node, index), index);
current_node = _root[ index ];
}
}
}
makeBlack(current_node, index);
}
/**
* swap two nodes (except for their content), taking care of
* special cases where one is the other's parent ... hey, it
* happens.
*
* @param x one node
* @param y another node
* @param index _KEY or _VALUE
*/
private void swapPosition(Node x, Node y, int index)
{
// Save initial values.
Node x_old_parent = x.getParent(index);
Node x_old_left_child = x.getLeft(index);
Node x_old_right_child = x.getRight(index);
Node y_old_parent = y.getParent(index);
Node y_old_left_child = y.getLeft(index);
Node y_old_right_child = y.getRight(index);
boolean x_was_left_child =
(x.getParent(index) != null)
&& (x == x.getParent(index).getLeft(index));
boolean y_was_left_child =
(y.getParent(index) != null)
&& (y == y.getParent(index).getLeft(index));
// Swap, handling special cases of one being the other's parent.
if (x == y_old_parent)
{ // x was y's parent
x.setParent(y, index);
if (y_was_left_child)
{
y.setLeft(x, index);
y.setRight(x_old_right_child, index);
}
else
{
y.setRight(x, index);
y.setLeft(x_old_left_child, index);
}
}
else
{
x.setParent(y_old_parent, index);
if (y_old_parent != null)
{
if (y_was_left_child)
{
y_old_parent.setLeft(x, index);
}
else
{
y_old_parent.setRight(x, index);
}
}
y.setLeft(x_old_left_child, index);
y.setRight(x_old_right_child, index);
}
if (y == x_old_parent)
{ // y was x's parent
y.setParent(x, index);
if (x_was_left_child)
{
x.setLeft(y, index);
x.setRight(y_old_right_child, index);
}
else
{
x.setRight(y, index);
x.setLeft(y_old_left_child, index);
}
}
else
{
y.setParent(x_old_parent, index);
if (x_old_parent != null)
{
if (x_was_left_child)
{
x_old_parent.setLeft(y, index);
}
else
{
x_old_parent.setRight(y, index);
}
}
x.setLeft(y_old_left_child, index);
x.setRight(y_old_right_child, index);
}
// Fix children's parent pointers
if (x.getLeft(index) != null)
{
x.getLeft(index).setParent(x, index);
}
if (x.getRight(index) != null)
{
x.getRight(index).setParent(x, index);
}
if (y.getLeft(index) != null)
{
y.getLeft(index).setParent(y, index);
}
if (y.getRight(index) != null)
{
y.getRight(index).setParent(y, index);
}
x.swapColors(y, index);
// Check if _root changed
if (_root[ index ] == x)
{
_root[ index ] = y;
}
else if (_root[ index ] == y)
{
_root[ index ] = x;
}
}
/**
* check if an object is fit to be proper input ... has to be
* Comparable and non-null
*
* @param o the object being checked
* @param index _KEY or _VALUE (used to put the right word in the
* exception message)
*
* @exception NullPointerException if o is null
* @exception ClassCastException if o is not Comparable
*/
private static void checkNonNullComparable(Object o,
int index)
{
if (o == null)
{
throw new NullPointerException(_data_name[ index ]
+ " cannot be null");
}
if (!(o instanceof Comparable))
{
throw new ClassCastException(_data_name[ index ]
+ " must be Comparable");
}
}
/**
* check a key for validity (non-null and implements Comparable)
*
* @param key the key to be checked
*
* @exception NullPointerException if key is null
* @exception ClassCastException if key is not Comparable
*/
private static void checkKey(Object key)
{
checkNonNullComparable(key, _KEY);
}
/**
* check a value for validity (non-null and implements Comparable)
*
* @param value the value to be checked
*
* @exception NullPointerException if value is null
* @exception ClassCastException if value is not Comparable
*/
private static void checkValue(Object value)
{
checkNonNullComparable(value, _VALUE);
}
/**
* check a key and a value for validity (non-null and implements
* Comparable)
*
* @param key the key to be checked
* @param value the value to be checked
*
* @exception NullPointerException if key or value is null
* @exception ClassCastException if key or value is not Comparable
*/
private static void checkKeyAndValue(Object key, Object value)
{
checkKey(key);
checkValue(value);
}
/**
* increment the modification count -- used to check for
* concurrent modification of the map through the map and through
* an Iterator from one of its Set or Collection views
*/
private void modify()
{
_modifications++;
}
/**
* bump up the size and note that the map has changed
*/
private void grow()
{
modify();
_size++;
}
/**
* decrement the size and note that the map has changed
*/
private void shrink()
{
modify();
_size--;
}
/**
* insert a node by its value
*
* @param newNode the node to be inserted
*
* @exception IllegalArgumentException if the node already exists
* in the value mapping
*/
private void insertValue(Node newNode)
throws IllegalArgumentException
{
Node node = _root[ _VALUE ];
while (true)
{
int cmp = compare(newNode.getData(_VALUE), node.getData(_VALUE));
if (cmp == 0)
{
throw new IllegalArgumentException(
"Cannot store a duplicate value (\""
+ newNode.getData(_VALUE) + "\") in this Map");
}
else if (cmp < 0)
{
if (node.getLeft(_VALUE) != null)
{
node = node.getLeft(_VALUE);
}
else
{
node.setLeft(newNode, _VALUE);
newNode.setParent(node, _VALUE);
doRedBlackInsert(newNode, _VALUE);
break;
}
}
else
{ // cmp > 0
if (node.getRight(_VALUE) != null)
{
node = node.getRight(_VALUE);
}
else
{
node.setRight(newNode, _VALUE);
newNode.setParent(node, _VALUE);
doRedBlackInsert(newNode, _VALUE);
break;
}
}
}
}
/* ********** START implementation of Map ********** */
/**
* Returns the number of key-value mappings in this map. If the
* map contains more than Integer.MAX_VALUE elements, returns
* Integer.MAX_VALUE.
*
* @return the number of key-value mappings in this map.
*/
public int size()
{
return _size;
}
/**
* Returns true if this map contains a mapping for the specified
* key.
*
* @param key key whose presence in this map is to be tested.
*
* @return true if this map contains a mapping for the specified
* key.
*
* @exception ClassCastException if the key is of an inappropriate
* type for this map.
* @exception NullPointerException if the key is null
*/
public boolean containsKey(Object key)
throws ClassCastException, NullPointerException
{
checkKey(key);
return lookup(( Comparable ) key, _KEY) != null;
}
/**
* Returns true if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested.
*
* @return true if this map maps one or more keys to the specified
* value.
*/
public boolean containsValue(Object value)
{
checkValue(value);
return lookup(( Comparable ) value, _VALUE) != null;
}
/**
* Returns the value to which this map maps the specified
* key. Returns null if the map contains no mapping for this key.
*
* @param key key whose associated value is to be returned.
*
* @return the value to which this map maps the specified key, or
* null if the map contains no mapping for this key.
*
* @exception ClassCastException if the key is of an inappropriate
* type for this map.
* @exception NullPointerException if the key is null
*/
public Object get(Object key)
throws ClassCastException, NullPointerException
{
return doGet(( Comparable ) key, _KEY);
}
/**
* Associates the specified value with the specified key in this
* map.
*
* @param key key with which the specified value is to be
* associated.
* @param value value to be associated with the specified key.
*
* @return null
*
* @exception ClassCastException if the class of the specified key
* or value prevents it from being
* stored in this map.
* @exception NullPointerException if the specified key or value
* is null
* @exception IllegalArgumentException if the key duplicates an
* existing key, or if the
* value duplicates an
* existing value
*/
public Object put(Object key, Object value)
throws ClassCastException, NullPointerException,
IllegalArgumentException
{
checkKeyAndValue(key, value);
Node node = _root[ _KEY ];
if (node == null)
{
Node root = new Node(( Comparable ) key, ( Comparable ) value);
_root[ _KEY ] = root;
_root[ _VALUE ] = root;
grow();
}
else
{
while (true)
{
int cmp = compare(( Comparable ) key, node.getData(_KEY));
if (cmp == 0)
{
throw new IllegalArgumentException(
"Cannot store a duplicate key (\"" + key
+ "\") in this Map");
}
else if (cmp < 0)
{
if (node.getLeft(_KEY) != null)
{
node = node.getLeft(_KEY);
}
else
{
Node newNode = new Node(( Comparable ) key,
( Comparable ) value);
insertValue(newNode);
node.setLeft(newNode, _KEY);
newNode.setParent(node, _KEY);
doRedBlackInsert(newNode, _KEY);
grow();
break;
}
}
else
{ // cmp > 0
if (node.getRight(_KEY) != null)
{
node = node.getRight(_KEY);
}
else
{
Node newNode = new Node(( Comparable ) key,
( Comparable ) value);
insertValue(newNode);
node.setRight(newNode, _KEY);
newNode.setParent(node, _KEY);
doRedBlackInsert(newNode, _KEY);
grow();
break;
}
}
}
}
return null;
}
/**
* Removes the mapping for this key from this map if present
*
* @param key key whose mapping is to be removed from the map.
*
* @return previous value associated with specified key, or null
* if there was no mapping for key.
*/
public Object remove(Object key)
{
return doRemove(( Comparable ) key, _KEY);
}
/**
* Removes all mappings from this map
*/
public void clear()
{
modify();
_size = 0;
_root[ _KEY ] = null;
_root[ _VALUE ] = null;
}
/**
* Returns a set view of the keys contained in this map. The set
* is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an
* iteration over the set is in progress, the results of the
* iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove, Set.remove, removeAll, retainAll, and clear
* operations. It does not support the add or addAll operations.
*
* @return a set view of the keys contained in this map.
*/
public Set keySet()
{
if (_key_set[ _KEY ] == null)
{
_key_set[ _KEY ] = new AbstractSet()
{
public Iterator iterator()
{
return new BinaryTreeIterator(_KEY)
{
protected Object doGetNext()
{
return _last_returned_node.getData(_KEY);
}
};
}
public int size()
{
return BinaryTree.this.size();
}
public boolean contains(Object o)
{
return containsKey(o);
}
public boolean remove(Object o)
{
int old_size = _size;
BinaryTree.this.remove(o);
return _size != old_size;
}
public void clear()
{
BinaryTree.this.clear();
}
};
}
return _key_set[ _KEY ];
}
/**
* Returns a collection view of the values contained in this
* map. The collection is backed by the map, so changes to the map
* are reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress,
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove,
* Collection.remove, removeAll, retainAll and clear operations.
* It does not support the add or addAll operations.
*
* @return a collection view of the values contained in this map.
*/
public Collection values()
{
if (_value_collection[ _KEY ] == null)
{
_value_collection[ _KEY ] = new AbstractCollection()
{
public Iterator iterator()
{
return new BinaryTreeIterator(_KEY)
{
protected Object doGetNext()
{
return _last_returned_node.getData(_VALUE);
}
};
}
public int size()
{
return BinaryTree.this.size();
}
public boolean contains(Object o)
{
return containsValue(o);
}
public boolean remove(Object o)
{
int old_size = _size;
removeValue(o);
return _size != old_size;
}
public boolean removeAll(Collection c)
{
boolean modified = false;
Iterator iter = c.iterator();
while (iter.hasNext())
{
if (removeValue(iter.next()) != null)
{
modified = true;
}
}
return modified;
}
public void clear()
{
BinaryTree.this.clear();
}
};
}
return _value_collection[ _KEY ];
}
/**
* Returns a set view of the mappings contained in this map. Each
* element in the returned set is a Map.Entry. The set is backed
* by the map, so changes to the map are reflected in the set, and
* vice-versa. If the map is modified while an iteration over the
* set is in progress, the results of the iteration are
* undefined. The set supports element removal, which removes the
* corresponding mapping from the map, via the Iterator.remove,
* Set.remove, removeAll, retainAll and clear operations. It does
* not support the add or addAll operations.
*
* @return a set view of the mappings contained in this map.
*/
public Set entrySet()
{
if (_entry_set[ _KEY ] == null)
{
_entry_set[ _KEY ] = new AbstractSet()
{
public Iterator iterator()
{
return new BinaryTreeIterator(_KEY)
{
protected Object doGetNext()
{
return _last_returned_node;
}
};
}
public boolean contains(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry entry = ( Map.Entry ) o;
Object value = entry.getValue();
Node node = lookup(( Comparable ) entry.getKey(),
_KEY);
return (node != null)
&& node.getData(_VALUE).equals(value);
}
public boolean remove(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry entry = ( Map.Entry ) o;
Object value = entry.getValue();
Node node = lookup(( Comparable ) entry.getKey(),
_KEY);
if ((node != null) && node.getData(_VALUE).equals(value))
{
doRedBlackDelete(node);
return true;
}
return false;
}
public int size()
{
return BinaryTree.this.size();
}
public void clear()
{
BinaryTree.this.clear();
}
};
}
return _entry_set[ _KEY ];
}
/* ********** END implementation of Map ********** */
private abstract class BinaryTreeIterator
implements Iterator
{
private int _expected_modifications;
protected Node _last_returned_node;
private Node _next_node;
private int _type;
/**
* Constructor
*
* @param type
*/
BinaryTreeIterator(int type)
{
_type = type;
_expected_modifications = BinaryTree.this._modifications;
_last_returned_node = null;
_next_node = leastNode(_root[ _type ], _type);
}
/**
* @return 'next', whatever that means for a given kind of
* BinaryTreeIterator
*/
protected abstract Object doGetNext();
/* ********** START implementation of Iterator ********** */
/**
* @return true if the iterator has more elements.
*/
public boolean hasNext()
{
return _next_node != null;
}
/**
* @return the next element in the iteration.
*
* @exception NoSuchElementException if iteration has no more
* elements.
* @exception ConcurrentModificationException if the
* BinaryTree is
* modified behind
* the iterator's
* back
*/
public Object next()
throws NoSuchElementException, ConcurrentModificationException
{
if (_next_node == null)
{
throw new NoSuchElementException();
}
if (_modifications != _expected_modifications)
{
throw new ConcurrentModificationException();
}
_last_returned_node = _next_node;
_next_node = nextGreater(_next_node, _type);
return doGetNext();
}
/**
* Removes from the underlying collection the last element
* returned by the iterator. This method can be called only
* once per call to next. The behavior of an iterator is
* unspecified if the underlying collection is modified while
* the iteration is in progress in any way other than by
* calling this method.
*
* @exception IllegalStateException if the next method has not
* yet been called, or the
* remove method has already
* been called after the last
* call to the next method.
* @exception ConcurrentModificationException if the
* BinaryTree is
* modified behind
* the iterator's
* back
*/
public void remove()
throws IllegalStateException, ConcurrentModificationException
{
if (_last_returned_node == null)
{
throw new IllegalStateException();
}
if (_modifications != _expected_modifications)
{
throw new ConcurrentModificationException();
}
doRedBlackDelete(_last_returned_node);
_expected_modifications++;
_last_returned_node = null;
}
/* ********** END implementation of Iterator ********** */
} // end private abstract class BinaryTreeIterator
// for performance
private static final class Node
implements Map.Entry
{
private Comparable[] _data;
private Node[] _left;
private Node[] _right;
private Node[] _parent;
private boolean[] _black;
private int _hashcode;
private boolean _calculated_hashcode;
/**
* Make a new cell with given key and value, and with null
* links, and black (true) colors.
*
* @param key
* @param value
*/
Node(Comparable key, Comparable value)
{
_data = new Comparable[]
{
key, value
};
_left = new Node[]
{
null, null
};
_right = new Node[]
{
null, null
};
_parent = new Node[]
{
null, null
};
_black = new boolean[]
{
true, true
};
_calculated_hashcode = false;
}
/**
* get the specified data
*
* @param index _KEY or _VALUE
*
* @return the key or value
*/
public Comparable getData(int index)
{
return _data[ index ];
}
/**
* Set this node's left node
*
* @param node the new left node
* @param index _KEY or _VALUE
*/
public void setLeft(Node node, int index)
{
_left[ index ] = node;
}
/**
* get the left node
*
* @param index _KEY or _VALUE
*
* @return the left node -- may be null
*/
public Node getLeft(int index)
{
return _left[ index ];
}
/**
* Set this node's right node
*
* @param node the new right node
* @param index _KEY or _VALUE
*/
public void setRight(Node node, int index)
{
_right[ index ] = node;
}
/**
* get the right node
*
* @param index _KEY or _VALUE
*
* @return the right node -- may be null
*/
public Node getRight(int index)
{
return _right[ index ];
}
/**
* Set this node's parent node
*
* @param node the new parent node
* @param index _KEY or _VALUE
*/
public void setParent(Node node, int index)
{
_parent[ index ] = node;
}
/**
* get the parent node
*
* @param index _KEY or _VALUE
*
* @return the parent node -- may be null
*/
public Node getParent(int index)
{
return _parent[ index ];
}
/**
* exchange colors with another node
*
* @param node the node to swap with
* @param index _KEY or _VALUE
*/
public void swapColors(Node node, int index)
{
// Swap colors -- old hacker's trick
_black[ index ] ^= node._black[ index ];
node._black[ index ] ^= _black[ index ];
_black[ index ] ^= node._black[ index ];
}
/**
* is this node black?
*
* @param index _KEY or _VALUE
*
* @return true if black (which is represented as a true boolean)
*/
public boolean isBlack(int index)
{
return _black[ index ];
}
/**
* is this node red?
*
* @param index _KEY or _VALUE
*
* @return true if non-black
*/
public boolean isRed(int index)
{
return !_black[ index ];
}
/**
* make this node black
*
* @param index _KEY or _VALUE
*/
public void setBlack(int index)
{
_black[ index ] = true;
}
/**
* make this node red
*
* @param index _KEY or _VALUE
*/
public void setRed(int index)
{
_black[ index ] = false;
}
/**
* make this node the same color as another
*
* @param node the node whose color we're adopting
* @param index _KEY or _VALUE
*/
public void copyColor(Node node, int index)
{
_black[ index ] = node._black[ index ];
}
/* ********** START implementation of Map.Entry ********** */
/**
* @return the key corresponding to this entry.
*/
public Object getKey()
{
return _data[ _KEY ];
}
/**
* @return the value corresponding to this entry.
*/
public Object getValue()
{
return _data[ _VALUE ];
}
/**
* Optional operation that is not permitted in this
* implementation
*
* @param ignored
*
* @return does not return
*/
public Object setValue(Object ignored)
throws UnsupportedOperationException
{
throw new UnsupportedOperationException(
"Map.Entry.setValue is not supported");
}
/**
* Compares the specified object with this entry for equality.
* Returns true if the given object is also a map entry and
* the two entries represent the same mapping.
*
* @param o object to be compared for equality with this map
* entry.
* @return true if the specified object is equal to this map
* entry.
*/
public boolean equals(Object o)
{
if (this == o)
{
return true;
}
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry e = ( Map.Entry ) o;
return _data[ _KEY ].equals(e.getKey())
&& _data[ _VALUE ].equals(e.getValue());
}
/**
* @return the hash code value for this map entry.
*/
public int hashCode()
{
if (!_calculated_hashcode)
{
_hashcode = _data[ _KEY ].hashCode()
^ _data[ _VALUE ].hashCode();
_calculated_hashcode = true;
}
return _hashcode;
}
/* ********** END implementation of Map.Entry ********** */
}
}
|