aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorVsevolod Stakhov <vsevolod@highsecure.ru>2020-08-03 14:03:59 +0100
committerVsevolod Stakhov <vsevolod@highsecure.ru>2020-08-03 14:03:59 +0100
commit335895abf91bd5eb7d0d4d1dc1fecc60d55fd236 (patch)
tree05f3f438da28056797c035cec15fa8af648b1de1
parent2eafa1650e51feb9715ec21f3562b75a0fc1a008 (diff)
downloadrspamd-335895abf91bd5eb7d0d4d1dc1fecc60d55fd236.tar.gz
rspamd-335895abf91bd5eb7d0d4d1dc1fecc60d55fd236.zip
[Project] Some more fixes
-rw-r--r--src/plugins/lua/neural.lua12
1 files changed, 8 insertions, 4 deletions
diff --git a/src/plugins/lua/neural.lua b/src/plugins/lua/neural.lua
index fcf9ac5c2..e3518d3bd 100644
--- a/src/plugins/lua/neural.lua
+++ b/src/plugins/lua/neural.lua
@@ -490,9 +490,7 @@ local function ann_push_task_result(rule, task, verdict, score, set)
if not err and type(data) == 'table' then
local nspam,nham = data[1],data[2]
- if nspam > 0 and nham > 0 and
- can_push_train_vector(rule, task, learn_type, nspam, nham) then
-
+ if can_push_train_vector(rule, task, learn_type, nspam, nham) then
local vec = result_to_vector(task, set)
local str = rspamd_util.zstd_compress(table.concat(vec, ';'))
@@ -518,6 +516,11 @@ local function ann_push_task_result(rule, task, verdict, score, set)
'LPUSH', -- command
{ target_key, str } -- arguments
)
+ else
+ lua_util.debugm(N, task,
+ "do not add %s train data for ANN rule " ..
+ "%s:%s",
+ learn_type, rule.prefix, set.name)
end
else
if err then
@@ -1100,6 +1103,7 @@ local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
-- at least (10 * (1 - 0.25)) = 8 trains
local max_len = math.max(lua_util.unpack(lua_util.values(lens)))
+ local min_len = math.min(lua_util.unpack(lua_util.values(lens)))
if rule.train.learn_type == 'balanced' then
local len_bias_check_pred = function(_, l)
@@ -1117,7 +1121,7 @@ local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
end
else
-- Probabilistic mode, just ensure that at least one vector is okay
- if max_len >= rule.train.max_trains then
+ if min_len > 0 and max_len >= rule.train.max_trains then
rspamd_logger.debugm(N, rspamd_config,
'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
ann_key, lens, rule.train.max_trains, what)