aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c')
-rw-r--r--contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c150
1 files changed, 150 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c b/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c
new file mode 100644
index 000000000..7b60d64c2
--- /dev/null
+++ b/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c
@@ -0,0 +1,150 @@
+#ifndef TH_GENERIC_FILE
+#define TH_GENERIC_FILE "generic/SoftMax.c"
+#else
+
+void THNN_(SoftMax_updateOutput)(
+ THNNState *state,
+ THTensor *input,
+ THTensor *output)
+{
+ real *input_data, *output_data;
+ ptrdiff_t nframe = 0, dim = 0, stride = 0;
+ ptrdiff_t t;
+
+ if (input->nDimension == 1)
+ {
+ nframe = 1;
+ dim = input->size[0];
+ stride = 1;
+ }
+ else if (input->nDimension == 2)
+ {
+ nframe = input->size[0];
+ dim = input->size[1];
+ stride = 1;
+ }
+ else if (input->nDimension == 3)
+ {
+ nframe = 1;
+ dim = input->size[0];
+ stride = input->size[1]*input->size[2];
+ }
+ else if (input->nDimension == 4)
+ {
+ nframe = input->size[0];
+ dim = input->size[1];
+ stride = input->size[2]*input->size[3];
+ }
+ else
+ {
+ THArgCheck(0, 2, "1D, 2D, 3D or 4D tensor expected");
+ }
+
+ input = THTensor_(newContiguous)(input);
+ THTensor_(resizeAs)(output, input);
+
+ input_data = THTensor_(data)(input);
+ output_data = THTensor_(data)(output);
+
+#pragma omp parallel for private(t)
+ for (t = 0; t < stride*nframe; t++)
+ {
+ real *input_ptr = input_data + (t/stride)*dim*stride + t % stride;
+ real *output_ptr = output_data + (t/stride)*dim*stride + t % stride;
+
+ real inputMax = -THInf;
+ accreal sum;
+
+ ptrdiff_t d;
+ for (d = 0; d < dim; d++)
+ {
+ if (input_ptr[d*stride] >= inputMax) inputMax = input_ptr[d*stride];
+ }
+
+ sum = 0;
+ for (d = 0; d < dim; d++)
+ {
+ real z = exp(input_ptr[d*stride] - inputMax);
+ output_ptr[d*stride] = z;
+ sum += z;
+ }
+
+ for (d = 0; d < dim; d++)
+ {
+ output_ptr[d*stride] *= 1/sum;
+ }
+ }
+
+ THTensor_(free)(input);
+}
+
+void THNN_(SoftMax_updateGradInput)(
+ THNNState *state,
+ THTensor *input,
+ THTensor *gradOutput,
+ THTensor *gradInput,
+ THTensor *output)
+{
+ THNN_CHECK_SHAPE(input, gradOutput);
+ real *gradInput_data, *gradOutput_data, *output_data;
+ ptrdiff_t nframe = 0, dim = 0, stride = 0;
+ ptrdiff_t t;
+
+ if (output->nDimension == 1)
+ {
+ nframe = 1;
+ dim = output->size[0];
+ stride = 1;
+ }
+ else if (output->nDimension == 2)
+ {
+ nframe = output->size[0];
+ dim = output->size[1];
+ stride = 1;
+ }
+ else if (output->nDimension == 3)
+ {
+ nframe = 1;
+ dim = output->size[0];
+ stride = output->size[1]*output->size[2];
+ }
+ else if (output->nDimension == 4)
+ {
+ nframe = output->size[0];
+ dim = output->size[1];
+ stride = output->size[2]*output->size[3];
+ }
+ else
+ {
+ THError("1D, 2D, 3D or 4D tensor expected");
+ }
+
+ gradOutput = THTensor_(newContiguous)(gradOutput);
+ output = THTensor_(newContiguous)(output);
+
+ THTensor_(resizeAs)(gradInput, output);
+ gradInput_data = THTensor_(data)(gradInput);
+ output_data = THTensor_(data)(output);
+ gradOutput_data = THTensor_(data)(gradOutput);
+
+#pragma omp parallel for private(t)
+ for (t = 0; t < stride*nframe; t++)
+ {
+ real *gradInput_ptr = gradInput_data + (t/stride)*dim*stride + t % stride;
+ real *output_ptr = output_data + (t/stride)*dim*stride + t % stride;
+ real *gradOutput_ptr = gradOutput_data + (t/stride)*dim*stride + t % stride;
+
+ ptrdiff_t d;
+ accreal sum = 0;
+ for (d = 0; d < dim; d++)
+ sum += (accreal)gradOutput_ptr[d*stride] * output_ptr[d*stride];
+
+ for (d = 0; d < dim; d++)
+ gradInput_ptr[d*stride] = output_ptr[d*stride] * (gradOutput_ptr[d*stride] - sum);
+ }
+
+ THTensor_(free)(gradOutput);
+ THTensor_(free)(output);
+}
+
+#endif