diff options
Diffstat (limited to 'contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c')
-rw-r--r-- | contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c | 150 |
1 files changed, 150 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c b/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c new file mode 100644 index 000000000..7b60d64c2 --- /dev/null +++ b/contrib/lua-torch/nn/lib/THNN/generic/SoftMax.c @@ -0,0 +1,150 @@ +#ifndef TH_GENERIC_FILE +#define TH_GENERIC_FILE "generic/SoftMax.c" +#else + +void THNN_(SoftMax_updateOutput)( + THNNState *state, + THTensor *input, + THTensor *output) +{ + real *input_data, *output_data; + ptrdiff_t nframe = 0, dim = 0, stride = 0; + ptrdiff_t t; + + if (input->nDimension == 1) + { + nframe = 1; + dim = input->size[0]; + stride = 1; + } + else if (input->nDimension == 2) + { + nframe = input->size[0]; + dim = input->size[1]; + stride = 1; + } + else if (input->nDimension == 3) + { + nframe = 1; + dim = input->size[0]; + stride = input->size[1]*input->size[2]; + } + else if (input->nDimension == 4) + { + nframe = input->size[0]; + dim = input->size[1]; + stride = input->size[2]*input->size[3]; + } + else + { + THArgCheck(0, 2, "1D, 2D, 3D or 4D tensor expected"); + } + + input = THTensor_(newContiguous)(input); + THTensor_(resizeAs)(output, input); + + input_data = THTensor_(data)(input); + output_data = THTensor_(data)(output); + +#pragma omp parallel for private(t) + for (t = 0; t < stride*nframe; t++) + { + real *input_ptr = input_data + (t/stride)*dim*stride + t % stride; + real *output_ptr = output_data + (t/stride)*dim*stride + t % stride; + + real inputMax = -THInf; + accreal sum; + + ptrdiff_t d; + for (d = 0; d < dim; d++) + { + if (input_ptr[d*stride] >= inputMax) inputMax = input_ptr[d*stride]; + } + + sum = 0; + for (d = 0; d < dim; d++) + { + real z = exp(input_ptr[d*stride] - inputMax); + output_ptr[d*stride] = z; + sum += z; + } + + for (d = 0; d < dim; d++) + { + output_ptr[d*stride] *= 1/sum; + } + } + + THTensor_(free)(input); +} + +void THNN_(SoftMax_updateGradInput)( + THNNState *state, + THTensor *input, + THTensor *gradOutput, + THTensor *gradInput, + THTensor *output) +{ + THNN_CHECK_SHAPE(input, gradOutput); + real *gradInput_data, *gradOutput_data, *output_data; + ptrdiff_t nframe = 0, dim = 0, stride = 0; + ptrdiff_t t; + + if (output->nDimension == 1) + { + nframe = 1; + dim = output->size[0]; + stride = 1; + } + else if (output->nDimension == 2) + { + nframe = output->size[0]; + dim = output->size[1]; + stride = 1; + } + else if (output->nDimension == 3) + { + nframe = 1; + dim = output->size[0]; + stride = output->size[1]*output->size[2]; + } + else if (output->nDimension == 4) + { + nframe = output->size[0]; + dim = output->size[1]; + stride = output->size[2]*output->size[3]; + } + else + { + THError("1D, 2D, 3D or 4D tensor expected"); + } + + gradOutput = THTensor_(newContiguous)(gradOutput); + output = THTensor_(newContiguous)(output); + + THTensor_(resizeAs)(gradInput, output); + gradInput_data = THTensor_(data)(gradInput); + output_data = THTensor_(data)(output); + gradOutput_data = THTensor_(data)(gradOutput); + +#pragma omp parallel for private(t) + for (t = 0; t < stride*nframe; t++) + { + real *gradInput_ptr = gradInput_data + (t/stride)*dim*stride + t % stride; + real *output_ptr = output_data + (t/stride)*dim*stride + t % stride; + real *gradOutput_ptr = gradOutput_data + (t/stride)*dim*stride + t % stride; + + ptrdiff_t d; + accreal sum = 0; + for (d = 0; d < dim; d++) + sum += (accreal)gradOutput_ptr[d*stride] * output_ptr[d*stride]; + + for (d = 0; d < dim; d++) + gradInput_ptr[d*stride] = output_ptr[d*stride] * (gradOutput_ptr[d*stride] - sum); + } + + THTensor_(free)(gradOutput); + THTensor_(free)(output); +} + +#endif |