aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/lib/THNN/generic/SpatialFractionalMaxPooling.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-torch/nn/lib/THNN/generic/SpatialFractionalMaxPooling.c')
-rw-r--r--contrib/lua-torch/nn/lib/THNN/generic/SpatialFractionalMaxPooling.c253
1 files changed, 253 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/lib/THNN/generic/SpatialFractionalMaxPooling.c b/contrib/lua-torch/nn/lib/THNN/generic/SpatialFractionalMaxPooling.c
new file mode 100644
index 000000000..a98954cc6
--- /dev/null
+++ b/contrib/lua-torch/nn/lib/THNN/generic/SpatialFractionalMaxPooling.c
@@ -0,0 +1,253 @@
+#ifndef TH_GENERIC_FILE
+#define TH_GENERIC_FILE "generic/SpatialFractionalMaxPooling.c"
+#else
+
+static long* THNN_(SpatialFractionalMaxPooling_generateIntervals)(
+ real sample,
+ long inputSize,
+ long outputSize,
+ int poolSize) {
+ real alpha = (real) (inputSize - poolSize) / (real) (outputSize - 1);
+ long* sequence = (long*) THAlloc(sizeof(long) * outputSize);
+
+ long i;
+ for (i = 0; i < outputSize - 1; ++i) {
+ sequence[i] =
+ (long) ((i + sample) * alpha) - (long) (sample * alpha);
+ }
+ sequence[outputSize - 1] = inputSize - poolSize;
+
+ return sequence;
+}
+
+static void THNN_(SpatialFractionalMaxPooling_updateOutput_frame)(
+ real* input,
+ real* output,
+ THIndex_t* indices,
+ real* randomSamples,
+ long numPlanes,
+ long inputW, long inputH,
+ long outputW, long outputH,
+ int poolSizeW, int poolSizeH) {
+ long plane;
+#pragma omp parallel for private(plane)
+ for (plane = 0; plane < numPlanes; ++plane) {
+ /* each plane contains 2 random samples, one for W and one for H */
+ real* randomSamplesForPlane = randomSamples + plane * 2;
+
+ /* Generate interval sequence */
+ long* sequenceW =
+ THNN_(SpatialFractionalMaxPooling_generateIntervals)(
+ randomSamplesForPlane[0], inputW, outputW, poolSizeW);
+ long* sequenceH =
+ THNN_(SpatialFractionalMaxPooling_generateIntervals)(
+ randomSamplesForPlane[1], inputH, outputH, poolSizeH);
+
+ /* loop over output */
+ long h, w;
+
+ real* inputForPlane = input + plane * inputW * inputH;
+ real* outputForPlane = output + plane * outputW * outputH;
+ THIndex_t* indicesForPlane = indices + plane * outputW * outputH;
+
+ for (h = 0; h < outputH; ++h) {
+ long inputHStart = sequenceH[h];
+
+ for (w = 0; w < outputW; ++w) {
+ long inputWStart = sequenceW[w];
+
+ real maxVal = -THInf;
+ long maxIndex = -1;
+
+ long h2, w2;
+ for (h2 = inputHStart; h2 < inputHStart + poolSizeH; ++h2) {
+ for (w2 = inputWStart; w2 < inputWStart + poolSizeW; ++w2) {
+ THAssert(h2 >= 0 && h2 < inputH);
+ THAssert(w2 >= 0 && w2 < inputW);
+
+ long planeIndex = h2 * inputW + w2;
+ real val = inputForPlane[planeIndex];
+ if (val > maxVal) {
+ maxVal = val;
+ maxIndex = planeIndex;
+ }
+ }
+ }
+
+ THAssert(maxVal != -THInf);
+ THAssert(maxIndex != -1);
+
+ outputForPlane[h * outputW + w] = maxVal;
+ /* +1 to lua index */
+ indicesForPlane[h * outputW + w] = maxIndex + TH_INDEX_BASE;
+ }
+ }
+
+ THFree(sequenceW);
+ THFree(sequenceH);
+ }
+}
+
+void THNN_(SpatialFractionalMaxPooling_updateOutput)(
+ THNNState *state,
+ THTensor *input,
+ THTensor *output,
+ int outputW, int outputH,
+ int poolSizeW, int poolSizeH,
+ THIndexTensor *indices,
+ THTensor *randomSamples) {
+
+ long numBatch = 1;
+ int planeDim = 0;
+ int heightDim = 1;
+ int widthDim = 2;
+
+ long numInputDims = THTensor_(nDimension)(input);
+ THNN_ARGCHECK(numInputDims == 3 || numInputDims == 4, 2, input,
+ "3D or 4D (batch mode) tensor expected for input, but got: %s");
+
+ if (numInputDims == 4) {
+ numBatch = THTensor_(size)(input, 0);
+ planeDim++;
+ heightDim++;
+ widthDim++;
+ }
+
+ /* sizes */
+ long numPlanes = THTensor_(size)(input, planeDim);
+ long inputH = THTensor_(size)(input, heightDim);
+ long inputW = THTensor_(size)(input, widthDim);
+
+ THArgCheck(outputH + poolSizeH - 1 < inputH, 7,
+ "poolSizeH (%d) too large relative to input height (%d)",
+ poolSizeH, inputH);
+ THArgCheck(outputW + poolSizeW - 1 < inputW, 6,
+ "poolSizeW (%d) too large relative to input width (%d)",
+ poolSizeW, inputW);
+
+ /* get contiguous input */
+ input = THTensor_(newContiguous)(input);
+
+ if (numInputDims == 3) {
+ /* resize output */
+ THTensor_(resize3d)(output, numPlanes, outputH, outputW);
+ /* indices will contain the locations for each output point */
+ THIndexTensor_(resize3d)(indices, numPlanes, outputH, outputW);
+
+ THNN_(SpatialFractionalMaxPooling_updateOutput_frame)(
+ THTensor_(data)(input),
+ THTensor_(data)(output),
+ THIndexTensor_(data)(indices),
+ THTensor_(data)(randomSamples),
+ numPlanes, inputW, inputH, outputW, outputH, poolSizeW, poolSizeH);
+ } else {
+ THTensor_(resize4d)(output, numBatch, numPlanes, outputH, outputW);
+ /* indices will contain the locations for each output point */
+ THIndexTensor_(resize4d)(indices, numBatch, numPlanes, outputH, outputW);
+
+ long batch;
+#pragma omp parallel for private(batch)
+ for (batch = 0; batch < numBatch; ++batch) {
+ THNN_(SpatialFractionalMaxPooling_updateOutput_frame)(
+ THTensor_(data)(input) + batch * numPlanes * inputH * inputW,
+ THTensor_(data)(output) + batch * numPlanes * outputH * outputW,
+ THIndexTensor_(data)(indices) + batch * numPlanes * outputH * outputW,
+ THTensor_(data)(randomSamples) + batch * numPlanes * 2,
+ numPlanes, inputW, inputH, outputW, outputH, poolSizeW, poolSizeH);
+ }
+ }
+
+ /* cleanup */
+ THTensor_(free)(input);
+}
+
+static void THNN_(SpatialFractionalMaxPooling_updateGradInput_frame)(
+ real* gradInput,
+ real* gradOutput,
+ THIndex_t* indices,
+ long numPlanes,
+ long inputW, long inputH,
+ long outputW, long outputH) {
+ long plane;
+#pragma omp parallel for private(plane)
+ for (plane = 0; plane < numPlanes; plane++) {
+ real* gradInputForPlane = gradInput + plane * inputW * inputH;
+ real* gradOutputForPlane = gradOutput + plane * outputW * outputH;
+ THIndex_t* indicesForPlane = indices + plane * outputW * outputH;
+
+ long h, w;
+ for (h = 0; h < outputH; ++h) {
+ for (w = 0; w < outputW; ++w) {
+ long outputIndex = h * outputW + w;
+ long index = indicesForPlane[outputIndex] - TH_INDEX_BASE;
+ THAssert(index >= 0 && index < inputW * inputH);
+
+ gradInputForPlane[index] += gradOutputForPlane[outputIndex];
+ }
+ }
+ }
+}
+
+void THNN_(SpatialFractionalMaxPooling_updateGradInput)(
+ THNNState *state,
+ THTensor *input,
+ THTensor *gradOutput,
+ THTensor *gradInput,
+ int outputW, int outputH,
+ int poolSizeW, int poolSizeH,
+ THIndexTensor *indices) {
+
+ long numBatch = 1;
+ int planeDim = 0;
+ int heightDim = 1;
+ int widthDim = 2;
+
+ long numInputDims = THTensor_(nDimension)(input);
+ if (numInputDims == 4) {
+ numBatch = THTensor_(size)(input, 0);
+ planeDim = 1;
+ heightDim++;
+ widthDim++;
+ }
+
+ /* sizes */
+ long numPlanes = THTensor_(size)(input, planeDim);
+ long inputH = THTensor_(size)(input, heightDim);
+ long inputW = THTensor_(size)(input, widthDim);
+
+ THArgCheck(outputW == THTensor_(size)(gradOutput, widthDim), 3,
+ "gradOutput width unexpected");
+ THArgCheck(outputH == THTensor_(size)(gradOutput, heightDim), 3,
+ "gradOutput height unexpected");
+
+ /* get contiguous gradOutput */
+ gradOutput = THTensor_(newContiguous)(gradOutput);
+
+ /* resize */
+ THTensor_(resizeAs)(gradInput, input);
+ THTensor_(zero)(gradInput);
+
+ /* backprop */
+ if (numInputDims == 3) {
+ THNN_(SpatialFractionalMaxPooling_updateGradInput_frame)(
+ THTensor_(data)(gradInput),
+ THTensor_(data)(gradOutput),
+ THIndexTensor_(data)(indices),
+ numPlanes, inputW, inputH, outputW, outputH);
+ } else {
+ long batch;
+#pragma omp parallel for private(batch)
+ for (batch = 0; batch < numBatch; ++batch) {
+ THNN_(SpatialFractionalMaxPooling_updateGradInput_frame)(
+ THTensor_(data)(gradInput) + batch * numPlanes * inputH * inputW,
+ THTensor_(data)(gradOutput) + batch * numPlanes * outputH * outputW,
+ THIndexTensor_(data)(indices) + batch * numPlanes * outputH * outputW,
+ numPlanes, inputW, inputH, outputW, outputH);
+ }
+ }
+
+ /* cleanup */
+ THTensor_(free)(gradOutput);
+}
+
+#endif