aboutsummaryrefslogtreecommitdiffstats
path: root/lualib/rspamadm
diff options
context:
space:
mode:
Diffstat (limited to 'lualib/rspamadm')
-rw-r--r--lualib/rspamadm/clickhouse.lua195
1 files changed, 186 insertions, 9 deletions
diff --git a/lualib/rspamadm/clickhouse.lua b/lualib/rspamadm/clickhouse.lua
index 2ca4eab18..711437c94 100644
--- a/lualib/rspamadm/clickhouse.lua
+++ b/lualib/rspamadm/clickhouse.lua
@@ -16,9 +16,13 @@ limitations under the License.
local argparse = require "argparse"
local lua_clickhouse = require "lua_clickhouse"
+local lua_util = require "lua_util"
+local rspamd_http = require "rspamd_http"
local rspamd_upstream_list = require "rspamd_upstream_list"
local ucl = require "ucl"
+local E = {}
+
-- Define command line options
local parser = argparse()
:name 'rspamadm clickhouse'
@@ -80,6 +84,44 @@ neural_profile:option '--settings-id'
:argname('settings_id')
:default('')
+local neural_train = parser:command 'neural_train'
+ :description 'Train neural using data from Clickhouse'
+neural_train:option '--days'
+ :description 'Number of days to query data for'
+ :argname('days')
+ :default('7')
+neural_train:option '--column-name-digest'
+ :description 'Name of neural profile digest column in Clickhouse'
+ :argname('column_name_digest')
+ :default('NeuralDigest')
+neural_train:option '--column-name-vector'
+ :description 'Name of neural training vector column in Clickhouse'
+ :argname('column_name_vector')
+ :default('NeuralMpack')
+neural_train:option '--limit -l'
+ :description 'Maximum rows to fetch per day'
+ :argname('limit')
+neural_train:option '--profile -p'
+ :description 'Profile to use for training'
+ :argname('profile')
+ :default('default')
+neural_train:option '--rule -r'
+ :description 'Rule to train'
+ :argname('rule')
+ :default('default')
+neural_train:option '--spam -s'
+ :description 'WHERE clause to use for spam'
+ :argname('spam')
+ :default("Action == 'reject'")
+neural_train:option '--ham -h'
+ :description 'WHERE clause to use for ham'
+ :argname('ham')
+ :default('Score < 0')
+neural_train:option '--url -u'
+ :description 'URL to use for training'
+ :argname('url')
+ :default('http://127.0.0.1:11334/plugins/neural/learn')
+
local http_params = {
config = rspamd_config,
ev_base = rspamadm_ev_base,
@@ -97,6 +139,18 @@ local function load_config(config_file)
end
end
+local function days_list(days)
+ -- Create list of days to query starting with yesterday
+ local query_days = {}
+ local previous_date = os.time() - 86400
+ local num_days = tonumber(days)
+ for _ = 1, num_days do
+ table.insert(query_days, os.date('%Y-%m-%d', previous_date))
+ previous_date = previous_date - 86400
+ end
+ return query_days
+end
+
local function get_excluded_symbols(known_symbols, correlations, seen_total)
-- Walk results once to collect all symbols & count ocurrences
@@ -202,15 +256,7 @@ local function handle_neural_profile(args)
end
end
- -- Create list of days to query starting with yesterday
- local query_days = {}
- local previous_date = os.time() - 86400
- local num_days = tonumber(args.days)
- for _ = 1, num_days do
- table.insert(query_days, os.date('%Y-%m-%d', previous_date))
- previous_date = previous_date - 86400
- end
-
+ local query_days = days_list(args.days)
local conditions = {}
table.insert(conditions, string.format("SettingsId = '%s'", args.settings_id))
local limit = ''
@@ -263,8 +309,139 @@ local function handle_neural_profile(args)
io.stdout:write(ucl.to_format(json_output, 'json'))
end
+local function post_neural_training(url, rule, spam_rows, ham_rows)
+ -- Prepare JSON payload
+ local payload = ucl.to_format(
+ {
+ ham_vec = ham_rows,
+ rule = rule,
+ spam_vec = spam_rows,
+ }, 'json')
+
+ -- POST the payload
+ local err, response = rspamd_http.request({
+ body = payload,
+ config = rspamd_config,
+ ev_base = rspamadm_ev_base,
+ log_obj = rspamd_config,
+ resolver = rspamadm_dns_resolver,
+ session = rspamadm_session,
+ url = url,
+ })
+
+ if err then
+ io.stderr:write(string.format('HTTP error: %s\n', err))
+ os.exit(1)
+ end
+ if response.code ~= 200 then
+ io.stderr:write(string.format('bad HTTP code: %d\n', response.code))
+ os.exit(1)
+ end
+ io.stdout:write(string.format('%s\n', response.content))
+end
+
+local function handle_neural_train(args)
+
+ local this_where -- which class of messages are we collecting data for
+ local ham_rows, spam_rows = {}, {}
+ local want_spam, want_ham = true, true -- keep collecting while true
+ local ucl_parser = ucl.parser()
+
+ -- Try find profile in config
+ local neural_opts = rspamd_config:get_all_opt('neural')
+ local symbols_profile = ((((neural_opts or E).rules or E)[args.rule] or E).profile or E)[args.profile]
+ if not symbols_profile then
+ io.stderr:write(string.format("Couldn't find profile %s in rule %s\n", args.profile, args.rule))
+ os.exit(1)
+ end
+ -- Try find max_trains
+ local max_trains = (neural_opts.rules[args.rule].train or E).max_trains or 1000
+
+ -- Callback used to process rows from Clickhouse
+ local function process_row(r)
+ local destination -- which table to collect this information in
+ if this_where == args.ham then
+ destination = ham_rows
+ if #destination >= max_trains then
+ want_ham = false
+ return
+ end
+ else
+ destination = spam_rows
+ if #destination >= max_trains then
+ want_spam = false
+ return
+ end
+ end
+ local ok, err = ucl_parser:parse_string(r[args.column_name_vector], 'msgpack')
+ if not ok then
+ io.stderr:write(string.format("Couldn't parse [%s]: %s", r[args.column_name_vector], err))
+ os.exit(1)
+ end
+ table.insert(destination, ucl_parser:get_object())
+ end
+
+ -- Generate symbols digest
+ local symbols_digest = lua_util.table_digest(symbols_profile)
+ -- Create list of days to query data for
+ local query_days = days_list(args.days)
+ -- Set value for limit
+ local limit = ''
+ local num_limit = tonumber(args.limit)
+ if num_limit then
+ limit = string.format(' LIMIT %d', num_limit) -- Contains leading space
+ end
+ -- Prepare query elements
+ local conditions = {string.format("%s = '%s'", args.column_name_digest, symbols_digest)}
+ local query_fmt = 'SELECT %s FROM rspamd WHERE %s%s'
+
+ -- Run queries
+ for _, the_where in ipairs({args.ham, args.spam}) do
+ -- Inform callback which group of vectors we're collecting
+ this_where = the_where
+ table.insert(conditions, the_where) -- should be 2nd from last condition
+ -- Loop over days and try collect data
+ for _, query_day in ipairs(query_days) do
+ -- Break the loop if we have enough data already
+ if this_where == args.ham then
+ if not want_ham then
+ break
+ end
+ else
+ if not want_spam then
+ break
+ end
+ end
+ -- Date should be the last condition
+ table.insert(conditions, string.format("Date = '%s'", query_day))
+ local query = string.format(query_fmt, args.column_name_vector, table.concat(conditions, ' AND '), limit)
+ local upstream = args.upstream:get_upstream_round_robin()
+ local err = lua_clickhouse.select_sync(upstream, args, http_params, query, process_row)
+ if err ~= nil then
+ io.stderr:write(string.format('Error querying Clickhouse: %s\n', err))
+ os.exit(1)
+ end
+ conditions[#conditions] = nil -- remove Date condition
+ end
+ conditions[#conditions] = nil -- remove spam/ham condition
+ end
+
+ -- Make sure we collected enough data for training
+ if #ham_rows < max_trains then
+ io.stderr:write(string.format('Insufficient ham rows: %d/%d\n', #ham_rows, max_trains))
+ os.exit(1)
+ end
+ if #spam_rows < max_trains then
+ io.stderr:write(string.format('Insufficient spam rows: %d/%d\n', #spam_rows, max_trains))
+ os.exit(1)
+ end
+
+ return post_neural_training(args.url, args.rule, spam_rows, ham_rows)
+end
+
local command_handlers = {
neural_profile = handle_neural_profile,
+ neural_train = handle_neural_train,
}
local function handler(args)