1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
#include <stdbool.h>
#include <string.h>
#include "fpconv.h"
#include "powers.h"
#define fracmask 0x000FFFFFFFFFFFFFU
#define expmask 0x7FF0000000000000U
#define hiddenbit 0x0010000000000000U
#define signmask 0x8000000000000000U
#define expbias (1023 + 52)
#define absv(n) ((n) < 0 ? -(n) : (n))
#define minv(a, b) ((a) < (b) ? (a) : (b))
static uint64_t tens[] = {
10000000000000000000U, 1000000000000000000U, 100000000000000000U,
10000000000000000U, 1000000000000000U, 100000000000000U,
10000000000000U, 1000000000000U, 100000000000U,
10000000000U, 1000000000U, 100000000U,
10000000U, 1000000U, 100000U,
10000U, 1000U, 100U,
10U, 1U
};
static inline uint64_t get_dbits(double d)
{
union {
double dbl;
uint64_t i;
} dbl_bits = { d };
return dbl_bits.i;
}
static Fp build_fp(double d)
{
uint64_t bits = get_dbits(d);
Fp fp;
fp.frac = bits & fracmask;
fp.exp = (bits & expmask) >> 52;
if(fp.exp) {
fp.frac += hiddenbit;
fp.exp -= expbias;
} else {
fp.exp = -expbias + 1;
}
return fp;
}
static void normalize(Fp* fp)
{
while ((fp->frac & hiddenbit) == 0) {
fp->frac <<= 1;
fp->exp--;
}
int shift = 64 - 52 - 1;
fp->frac <<= shift;
fp->exp -= shift;
}
static void get_normalized_boundaries(Fp* fp, Fp* lower, Fp* upper)
{
upper->frac = (fp->frac << 1) + 1;
upper->exp = fp->exp - 1;
while ((upper->frac & (hiddenbit << 1)) == 0) {
upper->frac <<= 1;
upper->exp--;
}
int u_shift = 64 - 52 - 2;
upper->frac <<= u_shift;
upper->exp = upper->exp - u_shift;
int l_shift = fp->frac == hiddenbit ? 2 : 1;
lower->frac = (fp->frac << l_shift) - 1;
lower->exp = fp->exp - l_shift;
lower->frac <<= lower->exp - upper->exp;
lower->exp = upper->exp;
}
static Fp multiply(Fp* a, Fp* b)
{
const uint64_t lomask = 0x00000000FFFFFFFF;
uint64_t ah_bl = (a->frac >> 32) * (b->frac & lomask);
uint64_t al_bh = (a->frac & lomask) * (b->frac >> 32);
uint64_t al_bl = (a->frac & lomask) * (b->frac & lomask);
uint64_t ah_bh = (a->frac >> 32) * (b->frac >> 32);
uint64_t tmp = (ah_bl & lomask) + (al_bh & lomask) + (al_bl >> 32);
/* round up */
tmp += 1U << 31;
Fp fp = {
ah_bh + (ah_bl >> 32) + (al_bh >> 32) + (tmp >> 32),
a->exp + b->exp + 64
};
return fp;
}
static void round_digit(char* digits, int ndigits, uint64_t delta, uint64_t rem, uint64_t kappa, uint64_t frac)
{
while (rem < frac && delta - rem >= kappa &&
(rem + kappa < frac || frac - rem > rem + kappa - frac)) {
digits[ndigits - 1]--;
rem += kappa;
}
}
static int generate_digits(Fp* fp, Fp* upper, Fp* lower, char* digits, int* K)
{
uint64_t wfrac = upper->frac - fp->frac;
uint64_t delta = upper->frac - lower->frac;
Fp one;
one.frac = 1ULL << -upper->exp;
one.exp = upper->exp;
uint64_t part1 = upper->frac >> -one.exp;
uint64_t part2 = upper->frac & (one.frac - 1);
int idx = 0, kappa = 10;
uint64_t* divp;
/* 1000000000 */
for(divp = tens + 10; kappa > 0; divp++) {
uint64_t div = *divp;
unsigned digit = part1 / div;
if (digit || idx) {
digits[idx++] = digit + '0';
}
part1 -= digit * div;
kappa--;
uint64_t tmp = (part1 <<-one.exp) + part2;
if (tmp <= delta) {
*K += kappa;
round_digit(digits, idx, delta, tmp, div << -one.exp, wfrac);
return idx;
}
}
/* 10 */
uint64_t* unit = tens + 18;
while(true) {
part2 *= 10;
delta *= 10;
kappa--;
unsigned digit = part2 >> -one.exp;
if (digit || idx) {
digits[idx++] = digit + '0';
}
part2 &= one.frac - 1;
if (part2 < delta) {
*K += kappa;
round_digit(digits, idx, delta, part2, one.frac, wfrac * *unit);
return idx;
}
unit--;
}
}
static int grisu2(double d, char* digits, int* K)
{
Fp w = build_fp(d);
Fp lower, upper;
get_normalized_boundaries(&w, &lower, &upper);
normalize(&w);
int k;
Fp cp = find_cachedpow10(upper.exp, &k);
w = multiply(&w, &cp);
upper = multiply(&upper, &cp);
lower = multiply(&lower, &cp);
lower.frac++;
upper.frac--;
*K = -k;
return generate_digits(&w, &upper, &lower, digits, K);
}
static int emit_digits(char* digits, int ndigits, char* dest, int K, bool neg,
bool scientific)
{
int exp = absv(K + ndigits - 1);
/* write plain integer */
if(K >= 0 && (exp < (ndigits + 7))) {
memcpy(dest, digits, ndigits);
memset(dest + ndigits, '0', K);
return ndigits + K;
}
/* write decimal w/o scientific notation */
if(!scientific || (K < 0 && (K > -7 || exp < 4))) {
int offset = ndigits - absv(K);
/* fp < 1.0 -> write leading zero */
if(offset <= 0) {
offset = -offset;
dest[0] = '0';
dest[1] = '.';
/* We have up to 21 characters in output available */
if (offset + ndigits <= 21) {
memset(dest + 2, '0', offset);
memcpy(dest + offset + 2, digits, ndigits);
return ndigits + 2 + offset;
}
else {
goto scientific_fallback;
}
/* fp > 1.0 */
} else {
/* Overflow check */
if (ndigits <= 23) {
memcpy(dest, digits, offset);
dest[offset] = '.';
memcpy(dest + offset + 1, digits + offset, ndigits - offset);
return ndigits + 1;
}
goto scientific_fallback;
}
}
scientific_fallback:
/* write decimal w/ scientific notation */
ndigits = minv(ndigits, 18 - neg);
int idx = 0;
dest[idx++] = digits[0];
if(ndigits > 1) {
dest[idx++] = '.';
memcpy(dest + idx, digits + 1, ndigits - 1);
idx += ndigits - 1;
}
dest[idx++] = 'e';
char sign = K + ndigits - 1 < 0 ? '-' : '+';
dest[idx++] = sign;
int cent = 0;
if(exp > 99) {
cent = exp / 100;
dest[idx++] = cent + '0';
exp -= cent * 100;
}
if(exp > 9) {
int dec = exp / 10;
dest[idx++] = dec + '0';
exp -= dec * 10;
} else if(cent) {
dest[idx++] = '0';
}
dest[idx++] = exp % 10 + '0';
return idx;
}
static int filter_special(double fp, char* dest)
{
int nchars = 3;
if(fp == 0.0) {
if(get_dbits(fp) & signmask) {
dest[0] = '-';
dest[1] = '0';
return 2;
}
else {
dest[0] = '0';
return 1;
}
}
uint64_t bits = get_dbits(fp);
bool nan = (bits & expmask) == expmask;
if(!nan) {
return 0;
}
if(bits & fracmask) {
dest[0] = 'n'; dest[1] = 'a'; dest[2] = 'n';
} else {
if(get_dbits(fp) & signmask) {
dest[0] = '-';
dest[1] = 'i'; dest[2] = 'n'; dest[3] = 'f';
nchars = 4;
}
else {
dest[0] = 'i'; dest[1] = 'n'; dest[2] = 'f';
}
}
return nchars;
}
int fpconv_dtoa(double d, char dest[24], bool scientific)
{
char digits[18];
int str_len = 0;
bool neg = false;
int spec = filter_special(d, dest + str_len);
if(spec) {
return str_len + spec;
}
if(get_dbits(d) & signmask) {
dest[0] = '-';
str_len++;
neg = true;
}
int K = 0;
int ndigits = grisu2(d, digits, &K);
str_len += emit_digits(digits, ndigits, dest + str_len, K, neg, scientific);
return str_len;
}
|