aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/Module.lua
blob: 3debc578926ef5f4f25931afb45cd5e704e63eab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
local Module = torch.class('nn.Module')

function Module:__init()
   self.gradInput = torch.Tensor()
   self.output = torch.Tensor()
   self._type = self.output:type()
end

function Module:parameters()
   if self.weight and self.bias then
      return {self.weight, self.bias}, {self.gradWeight, self.gradBias}
   elseif self.weight then
      return {self.weight}, {self.gradWeight}
   elseif self.bias then
      return {self.bias}, {self.gradBias}
   else
      return
   end
end

function Module:updateOutput(input)
   return self.output
end

function Module:forward(input)
   return self:updateOutput(input)
end

function Module:backward(input, gradOutput, scale)
   scale = scale or 1
   self:updateGradInput(input, gradOutput)
   self:accGradParameters(input, gradOutput, scale)
   return self.gradInput
end

function Module:backwardUpdate(input, gradOutput, lr)
   self:updateGradInput(input, gradOutput)
   self:accUpdateGradParameters(input, gradOutput, lr)
   return self.gradInput
end

function Module:updateGradInput(input, gradOutput)
   return self.gradInput
end

function Module:accGradParameters(input, gradOutput, scale)
end

function Module:accUpdateGradParameters(input, gradOutput, lr)
   if self.shared then
      self:sharedAccUpdateGradParameters(input, gradOutput, lr)
   else
      self:defaultAccUpdateGradParameters(input, gradOutput, lr)
   end
end

function Module:defaultAccUpdateGradParameters(input, gradOutput, lr)
   local gradWeight = self.gradWeight
   local gradBias = self.gradBias
   self.gradWeight = self.weight
   self.gradBias = self.bias
   self:accGradParameters(input, gradOutput, -lr)
   self.gradWeight = gradWeight
   self.gradBias = gradBias
end

function Module:sharedAccUpdateGradParameters(input, gradOutput, lr)
   if self:parameters() then
      self:zeroGradParameters()
      self:accGradParameters(input, gradOutput, 1)
      self:updateParameters(lr)
   end
end

function Module:zeroGradParameters()
   local _,gradParams = self:parameters()
   if gradParams then
      for i=1,#gradParams do
         gradParams[i]:zero()
      end
   end
end

function Module:updateParameters(learningRate)
   local params, gradParams = self:parameters()
   if params then
      for i=1,#params do
         params[i]:add(-learningRate, gradParams[i])
      end
   end
end

function Module:training()
   self.train = true
end

function Module:evaluate()
   self.train = false
end

function Module:share(mlp, ...)
   local arg = {...}
   for i,v in ipairs(arg) do
      if self[v] ~= nil then
         self[v]:set(mlp[v])
         self.shared = true
         mlp.shared = true
      end
   end
   return self
end

local function sharedWrite(...)
   local arg = {...}
   local shared = {}
   for i,v in ipairs(arg) do
       shared[v] = true
   end
   return function(self, file)
      local object = {}
      for k, v in pairs(self) do
         if shared[k] then
            assert(torch.isTensor(v), 'Shared parameters have to be Tensors')
            object[k] = v.new()
         else
            object[k] = v
         end
      end
      file:writeObject(object)
   end
end

function Module:clone(...)
   local oldWrite = nn.Module.write
   nn.Module.write = sharedWrite(...)

   local f = torch.MemoryFile("rw"):binary()
   f:writeObject(self)
   f:seek(1)
   local clone = f:readObject()
   f:close()

   nn.Module.write = oldWrite

   if select('#',...) > 0 then
      clone:share(self,...)
   end
   return clone
end

function Module:type(type, tensorCache)
   if not type then
      return self._type
   end

   tensorCache = tensorCache or {}

   -- find all tensors and convert them
   for key,param in pairs(self) do
      self[key] = nn.utils.recursiveType(param, type, tensorCache)
   end

   self._type = type
   return self
end

function Module:float(...)
   return self:type('torch.FloatTensor',...)
end

function Module:double(...)
   return self:type('torch.DoubleTensor',...)
end

function Module:cuda(...)
   return self:type('torch.CudaTensor',...)
end

function Module:reset()
end

function Module:write(file)
  -- Write all values in the object as a table.
  local object = {}
  for k, v in pairs(self) do
    object[k] = v
  end
  file:writeObject(object)
end

function Module:read(file)
  local object = file:readObject()
  for k, v in pairs(object) do
    self[k] = v
  end
end

-- This function is not easy to understand. It works as follows:
--
-- - gather all parameter tensors for this module (and children);
--   count all parameter values (floats)
-- - create one ginormous memory area (Storage object) with room for all
--   parameters
-- - remap each parameter tensor to point to an area within the ginormous
--   Storage, and copy it there
--
-- It has the effect of making all parameters point to the same memory area,
-- which is then returned.
--
-- The purpose is to allow operations over all parameters (such as momentum
-- updates and serialization), but it assumes that all parameters are of
-- the same type (and, in the case of CUDA, on the same device), which
-- is not always true. Use for_each() to iterate over this module and
-- children instead.
--
-- Module._flattenTensorBuffer can be used by other packages (e.g. cunn)
-- to specify the type of temporary buffers. For example, the temporary
-- buffers for CudaTensor could be FloatTensor, to avoid GPU memory usage.
--
-- TODO: This logically belongs to torch.Tensor, not nn.
Module._flattenTensorBuffer = {}
function Module.flatten(parameters)

   -- returns true if tensor occupies a contiguous region of memory (no holes)
   local function isCompact(tensor)
      local sortedStride, perm = torch.sort(
            torch.LongTensor(tensor:nDimension()):set(tensor:stride()), 1, true)
      local sortedSize = torch.LongTensor(tensor:nDimension()):set(
            tensor:size()):index(1, perm)
      local nRealDim = torch.clamp(sortedStride, 0, 1):sum()
      sortedStride = sortedStride:narrow(1, 1, nRealDim):clone()
      sortedSize   = sortedSize:narrow(1, 1, nRealDim):clone()
      local t = tensor.new():set(tensor:storage(), 1,
                                 sortedSize:storage(),
                                 sortedStride:storage())
      return t:isContiguous()
   end

   if not parameters or #parameters == 0 then
      return torch.Tensor()
   end
   local Tensor = parameters[1].new
   local TmpTensor = Module._flattenTensorBuffer[torch.type(parameters[1])] or Tensor

   -- 1. construct the set of all unique storages referenced by parameter tensors
   local storages = {}
   local nParameters = 0
   local parameterMeta = {}
   for k = 1,#parameters do
      local param = parameters[k]
      local storage = parameters[k]:storage()
      local storageKey = torch.pointer(storage)

      if not storages[storageKey] then
         storages[storageKey] = {storage, nParameters}
         nParameters = nParameters + storage:size()
      end

      parameterMeta[k] = {storageOffset = param:storageOffset() +
                                          storages[storageKey][2],
                          size          = param:size(),
                          stride        = param:stride()}
   end

   -- 2. construct a single tensor that will hold all the parameters
   local flatParameters = TmpTensor(nParameters):zero()

   -- 3. determine if there are elements in the storage that none of the
   --    parameter tensors reference ('holes')
   local tensorsCompact = true
   for k = 1,#parameters do
      local meta = parameterMeta[k]
      local tmp = TmpTensor():set(
         flatParameters:storage(), meta.storageOffset, meta.size, meta.stride)
      tmp:fill(1)
      tensorsCompact = tensorsCompact and isCompact(tmp)
   end

   local maskParameters  = flatParameters:byte():clone()
   local compactOffsets  = flatParameters:long():cumsum(1)
   local nUsedParameters = compactOffsets[-1]

   -- 4. copy storages into the flattened parameter tensor
   for _, storageAndOffset in pairs(storages) do
      local storage, offset = table.unpack(storageAndOffset)
      flatParameters[{{offset+1,offset+storage:size()}}]:copy(Tensor():set(storage))
   end

   -- 5. allow garbage collection
   storages = nil
   for k = 1,#parameters do
       parameters[k]:set(Tensor())
   end

   -- 6. compact the flattened parameters if there were holes
   if nUsedParameters ~= nParameters then
      assert(tensorsCompact,
         "Cannot gather tensors that are not compact")

      flatParameters = TmpTensor(nUsedParameters):copy(
            flatParameters:maskedSelect(maskParameters))
      for k = 1,#parameters do
        parameterMeta[k].storageOffset =
              compactOffsets[parameterMeta[k].storageOffset]
      end
   end

   if TmpTensor ~= Tensor then
      flatParameters = Tensor(flatParameters:nElement()):copy(flatParameters)
   end

   -- 7. fix up the parameter tensors to point at the flattened parameters
   for k = 1,#parameters do
      parameters[k]:set(flatParameters:storage(),
          parameterMeta[k].storageOffset,
          parameterMeta[k].size,
          parameterMeta[k].stride)
   end

   return flatParameters
end

function Module:getParameters()
   -- get parameters
   local parameters,gradParameters = self:parameters()
   local p, g = Module.flatten(parameters), Module.flatten(gradParameters)
   assert(p:nElement() == g:nElement(),
      'check that you are sharing parameters and gradParameters')
   if parameters then
      for i=1,#parameters do
         assert(parameters[i]:storageOffset() == gradParameters[i]:storageOffset(),
            'misaligned parameter at ' .. tostring(i))
      end
   end
   return p, g
end

function Module:__call__(input, gradOutput)
   self:forward(input)
   if gradOutput then
      self:backward(input, gradOutput)
      return self.output, self.gradInput
   else
      return self.output
   end
end

-- Run a callback (called with the module as an argument) in preorder over this
-- module and its children.
--
function Module:apply(callback)
    callback(self)

    if self.modules then
        for _, module in ipairs(self.modules) do
            module:apply(callback)
        end
    end
end

function Module:findModules(typename, container)
  container = container or self
  local nodes = {}
  local containers = {}
  local mod_type = torch.typename(self)
  if mod_type == typename then
    nodes[#nodes+1] = self
    containers[#containers+1] = container
  end
  -- Recurse on nodes with 'modules'
  if (self.modules ~= nil) then
    if (torch.type(self.modules) == 'table') then
      for i = 1, #self.modules do
        local child = self.modules[i]
        local cur_nodes, cur_containers =
          child:findModules(typename, self)
        assert(#cur_nodes == #cur_containers,
          'Internal error: incorrect return length')  -- This shouldn't happen
        -- add the list items from our child to our list (ie return a
        -- flattened table of the return nodes).
        for j = 1, #cur_nodes do
          nodes[#nodes+1] = cur_nodes[j]
          containers[#containers+1] = cur_containers[j]
        end
      end
    end
  end
  return nodes, containers
end

-- returns a list of modules
function Module:listModules()
   local function tinsert(to, from)
      if torch.type(from) == 'table' then
         for i=1,#from do
            tinsert(to,from[i])
         end
      else
         table.insert(to,from)
      end
   end
   -- include self first
   local modules = {self}
   if self.modules then
      for i=1,#self.modules do
         local modulas = self.modules[i]:listModules()
         if modulas then
            tinsert(modules,modulas)
         end
      end
   end
   return modules
end

function Module:clearState()
   return nn.utils.clear(self, 'output', 'gradInput')
end

-- similar to apply, recursively goes over network and calls
-- a callback function which returns a new module replacing the old one
function nn.Module:replace(callback)
   local out = callback(self)
   if self.modules then
      for i, module in ipairs(self.modules) do
         self.modules[i] = module:replace(callback)
      end
   end
   return out
end