blob: dc80be1b1566d06ba95accd8edf5df5ed4f978fe (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
local StochasticGradient = torch.class('nn.StochasticGradient')
function StochasticGradient:__init(module, criterion)
self.learningRate = 0.01
self.learningRateDecay = 0
self.maxIteration = 25
self.shuffleIndices = true
self.module = module
self.criterion = criterion
self.verbose = true
self.logger = function(s)
print(s)
end
end
function StochasticGradient:train(dataset)
local iteration = 1
local currentLearningRate = self.learningRate
local module = self.module
local criterion = self.criterion
local shuffledIndices = torch.randperm(dataset:size(), 'torch.LongTensor')
if not self.shuffleIndices then
for t = 1,dataset:size() do
shuffledIndices[t] = t
end
end
self.logger("# StochasticGradient: training")
while true do
local currentError = 0
for t = 1,dataset:size() do
local example = dataset[shuffledIndices[t]]
local input = example[1]
local target = example[2]
currentError = currentError + criterion:forward(module:forward(input), target)
module:updateGradInput(input, criterion:updateGradInput(module.output, target))
module:accUpdateGradParameters(input, criterion.gradInput, currentLearningRate)
if self.hookExample then
self.hookExample(self, example)
end
end
currentError = currentError / dataset:size()
if self.hookIteration then
self.hookIteration(self, iteration, currentError)
end
if self.verbose then
self.logger("# current error = " .. currentError)
end
iteration = iteration + 1
currentLearningRate = self.learningRate/(1+iteration*self.learningRateDecay)
if self.maxIteration > 0 and iteration > self.maxIteration then
self.logger("# StochasticGradient: you have reached the maximum number of iterations")
self.logger("# training error = " .. currentError)
break
end
end
end
|