summaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/lib/THNN/generic/SpatialAdaptiveAveragePooling.c
blob: 3675b42d78ea7a700774c73020e0c93d4a99847c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/SpatialAdaptiveAveragePooling.c"
#else

#define START_IND(a,b,c) (int)floor((float)(a * c) / b)
#define END_IND(a,b,c) (int)ceil((float)((a + 1) * c) / b)
// #define START_IND(a,b,c) a * c / b
// #define END_IND(a,b,c)  (a + 1) * c / b + ((a + 1) * c % b > 0)?1:0

static void THNN_(SpatialAdaptiveAveragePooling_updateOutput_frame)(
          real *input_p,
          real *output_p,
          long nslices,
          long iwidth,
          long iheight,
          long owidth,
          long oheight,
          long stridew,
          long strideh,
          long strided)
{
  long k;
#pragma omp parallel for private(k)
  for (k = 0; k < nslices; k++)
  {
    /* loop over output */
    long i, j;
    for(i = 0; i < oheight; i++)
    {
      int y_start = START_IND(i, oheight, iheight);
      int y_end   = END_IND(i, oheight, iheight);
      int kH = y_end-y_start;

      for(j = 0; j < owidth; j++)
      {

        int x_start = START_IND(j, owidth, iwidth);
        int x_end   = END_IND(j, owidth, iwidth);
        int kW = x_end-x_start;

        /* local pointers */
        real *ip = input_p   + k*strided + y_start*strideh + x_start*stridew;
        real *op = output_p  + k*owidth*oheight + i*owidth + j;

        /* compute local average: */
        real sum = 0;
        int x,y;
        for(y = 0; y < kH; y++)
        {
          for(x = 0; x < kW; x++)
          {
            real val = *(ip + y*strideh + x*stridew);
            sum += val;
          }
        }

        /* set output to local average */
        *op = sum / kW / kH;
      }
    }
  }
}

void THNN_(SpatialAdaptiveAveragePooling_updateOutput)(
          THNNState *state,
          THTensor *input,
          THTensor *output,
          int owidth,
          int oheight)
{
  int dimw = 2;
  int dimh = 1;
  long nbatch = 1;
  long nslices;
  long iheight;
  long iwidth;

  long istride_d;
  long istride_h;
  long istride_w;
  long istride_b;

  real *input_data;
  real *output_data;


  THNN_ARGCHECK(input->nDimension == 3 || input->nDimension == 4, 2, input,
		"3D or 4D (batch mode) tensor expected for input, but got: %s");

  if (input->nDimension == 4)
  {
    istride_b = input->stride[0];
    nbatch = input->size[0];
    dimw++;
    dimh++;
  }

  /* sizes */
  nslices = input->size[dimh-1];
  iheight = input->size[dimh];
  iwidth = input->size[dimw];
  /* strides */
  istride_d = input->stride[dimh-1];
  istride_h = input->stride[dimh];
  istride_w = input->stride[dimw];

  /* resize output */
  if (input->nDimension == 3)
  {
    THTensor_(resize3d)(output, nslices, oheight, owidth);

    input_data = THTensor_(data)(input);
    output_data = THTensor_(data)(output);

    THNN_(SpatialAdaptiveAveragePooling_updateOutput_frame)(input_data, output_data,
                                                      nslices,
                                                      iwidth, iheight,
                                                      owidth, oheight,
                                                      istride_w,istride_h,
                                                      istride_d);
  }
  else
  {
    long p;

    THTensor_(resize4d)(output, nbatch, nslices, oheight, owidth);

    input_data = THTensor_(data)(input);
    output_data = THTensor_(data)(output);

#pragma omp parallel for private(p)
    for (p = 0; p < nbatch; p++)
    {
      THNN_(SpatialAdaptiveAveragePooling_updateOutput_frame)(input_data+p*istride_b, output_data+p*nslices*owidth*oheight,
                                                        nslices,
                                                        iwidth, iheight,
                                                        owidth, oheight,
                                                        istride_w,istride_h,
                                                        istride_d);
    }
  }
}

static void THNN_(SpatialAdaptiveAveragePooling_updateGradInput_frame)(
          real *gradInput_p,
          real *gradOutput_p,
          long nslices,
          long iwidth,
          long iheight,
          long owidth,
          long oheight)
{
  long k;
#pragma omp parallel for private(k)
  for (k = 0; k < nslices; k++)
  {
    real *gradInput_p_k = gradInput_p + k*iwidth*iheight;
    real *gradOutput_p_k = gradOutput_p + k*owidth*oheight;

    /* calculate average */
    long i, j;
    for(i = 0; i < oheight; i++)
    {
      int y_start = START_IND(i, oheight, iheight);
      int y_end   = END_IND(i, oheight, iheight);
      int kH = y_end-y_start;

      for(j = 0; j < owidth; j++)
      {

        int x_start = START_IND(j, owidth, iwidth);
        int x_end   = END_IND(j, owidth, iwidth);
        int kW = x_end-x_start;

        int x,y;
        for(y = y_start; y < y_end; y++)
        {
          for(x = x_start; x < x_end; x++)
          {
            /* update gradient */
            gradInput_p_k[y*iwidth + x] += gradOutput_p_k[i*owidth + j] / kW / kH;
          }
        }
      }
    }
  }
}

void THNN_(SpatialAdaptiveAveragePooling_updateGradInput)(
          THNNState *state,
          THTensor *input,
          THTensor *gradOutput,
          THTensor *gradInput)
{
  int dimw = 2;
  int dimh = 1;
  long nbatch = 1;
  int nslices;
  int iheight;
  int iwidth;
  int oheight;
  int owidth;
  real *gradInput_data;
  real *gradOutput_data;

  /* get contiguous gradOutput */
  gradOutput = THTensor_(newContiguous)(gradOutput);

  /* resize */
  THTensor_(resizeAs)(gradInput, input);
  THTensor_(zero)(gradInput);

  if (input->nDimension == 4) {
    nbatch = input->size[0];
    dimw++;
    dimh++;
  }

  /* sizes */
  nslices = input->size[dimh-1];
  iheight = input->size[dimh];
  iwidth = input->size[dimw];
  oheight = gradOutput->size[dimh];
  owidth = gradOutput->size[dimw];

  /* get raw pointers */
  gradInput_data = THTensor_(data)(gradInput);
  gradOutput_data = THTensor_(data)(gradOutput);

  /* backprop */
  if (input->nDimension == 3)
  {
    THNN_(SpatialAdaptiveAveragePooling_updateGradInput_frame)(gradInput_data, gradOutput_data,
                                                         nslices,
                                                         iwidth, iheight,
                                                         owidth, oheight);
  }
  else
  {
    long p;
#pragma omp parallel for private(p)
    for (p = 0; p < nbatch; p++)
    {
      THNN_(SpatialAdaptiveAveragePooling_updateGradInput_frame)(gradInput_data+p*nslices*iwidth*iheight, gradOutput_data+p*nslices*owidth*oheight,
                                                           nslices,
                                                           iwidth, iheight,
                                                           owidth, oheight);
    }
  }

  /* cleanup */
  THTensor_(free)(gradOutput);
}

#endif

#undef START_IND
#undef END_IND