1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
--[[ ADADELTA implementation for SGD http://arxiv.org/abs/1212.5701
ARGS:
- `opfunc` : a function that takes a single input (X), the point of
evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `config` : a table of hyper-parameters
- `config.rho` : interpolation parameter
- `config.eps` : for numerical stability
- `config.weightDecay` : weight decay
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state.paramVariance` : vector of temporal variances of parameters
- `state.accDelta` : vector of accummulated delta of gradients
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
]]
function optim.adadelta(opfunc, x, config, state)
-- (0) get/update state
if config == nil and state == nil then
print('no state table, ADADELTA initializing')
end
local config = config or {}
local state = state or config
local rho = config.rho or 0.9
local eps = config.eps or 1e-6
local wd = config.weightDecay or 0
state.evalCounter = state.evalCounter or 0
-- (1) evaluate f(x) and df/dx
local fx,dfdx = opfunc(x)
-- (2) weight decay
if wd ~= 0 then
dfdx:add(wd, x)
end
-- (3) parameter update
if not state.paramVariance then
state.paramVariance = torch.Tensor():typeAs(x):resizeAs(dfdx):zero()
state.paramStd = torch.Tensor():typeAs(x):resizeAs(dfdx):zero()
state.delta = torch.Tensor():typeAs(x):resizeAs(dfdx):zero()
state.accDelta = torch.Tensor():typeAs(x):resizeAs(dfdx):zero()
end
state.paramVariance:mul(rho):addcmul(1-rho,dfdx,dfdx)
state.paramStd:resizeAs(state.paramVariance):copy(state.paramVariance):add(eps):sqrt()
state.delta:resizeAs(state.paramVariance):copy(state.accDelta):add(eps):sqrt():cdiv(state.paramStd):cmul(dfdx)
x:add(-1, state.delta)
state.accDelta:mul(rho):addcmul(1-rho, state.delta, state.delta)
-- (4) update evaluation counter
state.evalCounter = state.evalCounter + 1
-- return x*, f(x) before optimization
return x,{fx}
end
|