aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/simdutf/src/icelake/icelake_convert_utf32_to_utf16.inl.cpp
blob: 70df94dac935aa1f9d8a877cd3031a302f01a624 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// file included directly

// Todo: currently, this is just the haswell code, optimize for icelake kernel.
template <endianness big_endian>
std::pair<const char32_t *, char16_t *>
avx512_convert_utf32_to_utf16(const char32_t *buf, size_t len,
                              char16_t *utf16_output) {
  const char32_t *end = buf + len;

  const size_t safety_margin =
      12; // to avoid overruns, see issue
          // https://github.com/simdutf/simdutf/issues/92
  __m256i forbidden_bytemask = _mm256_setzero_si256();

  while (end - buf >= std::ptrdiff_t(8 + safety_margin)) {
    __m256i in = _mm256_loadu_si256((__m256i *)buf);

    const __m256i v_00000000 = _mm256_setzero_si256();
    const __m256i v_ffff0000 = _mm256_set1_epi32((int32_t)0xffff0000);

    // no bits set above 16th bit <=> can pack to UTF16 without surrogate pairs
    const __m256i saturation_bytemask =
        _mm256_cmpeq_epi32(_mm256_and_si256(in, v_ffff0000), v_00000000);
    const uint32_t saturation_bitmask =
        static_cast<uint32_t>(_mm256_movemask_epi8(saturation_bytemask));

    if (saturation_bitmask == 0xffffffff) {
      const __m256i v_f800 = _mm256_set1_epi32((uint32_t)0xf800);
      const __m256i v_d800 = _mm256_set1_epi32((uint32_t)0xd800);
      forbidden_bytemask = _mm256_or_si256(
          forbidden_bytemask,
          _mm256_cmpeq_epi32(_mm256_and_si256(in, v_f800), v_d800));

      __m128i utf16_packed = _mm_packus_epi32(_mm256_castsi256_si128(in),
                                              _mm256_extractf128_si256(in, 1));
      if (big_endian) {
        const __m128i swap =
            _mm_setr_epi8(1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14);
        utf16_packed = _mm_shuffle_epi8(utf16_packed, swap);
      }
      _mm_storeu_si128((__m128i *)utf16_output, utf16_packed);
      utf16_output += 8;
      buf += 8;
    } else {
      size_t forward = 7;
      size_t k = 0;
      if (size_t(end - buf) < forward + 1) {
        forward = size_t(end - buf - 1);
      }
      for (; k < forward; k++) {
        uint32_t word = buf[k];
        if ((word & 0xFFFF0000) == 0) {
          // will not generate a surrogate pair
          if (word >= 0xD800 && word <= 0xDFFF) {
            return std::make_pair(nullptr, utf16_output);
          }
          *utf16_output++ =
              big_endian
                  ? char16_t((uint16_t(word) >> 8) | (uint16_t(word) << 8))
                  : char16_t(word);
        } else {
          // will generate a surrogate pair
          if (word > 0x10FFFF) {
            return std::make_pair(nullptr, utf16_output);
          }
          word -= 0x10000;
          uint16_t high_surrogate = uint16_t(0xD800 + (word >> 10));
          uint16_t low_surrogate = uint16_t(0xDC00 + (word & 0x3FF));
          if (big_endian) {
            high_surrogate =
                uint16_t((high_surrogate >> 8) | (high_surrogate << 8));
            low_surrogate =
                uint16_t((low_surrogate >> 8) | (low_surrogate << 8));
          }
          *utf16_output++ = char16_t(high_surrogate);
          *utf16_output++ = char16_t(low_surrogate);
        }
      }
      buf += k;
    }
  }

  // check for invalid input
  if (static_cast<uint32_t>(_mm256_movemask_epi8(forbidden_bytemask)) != 0) {
    return std::make_pair(nullptr, utf16_output);
  }

  return std::make_pair(buf, utf16_output);
}

// Todo: currently, this is just the haswell code, optimize for icelake kernel.
template <endianness big_endian>
std::pair<result, char16_t *>
avx512_convert_utf32_to_utf16_with_errors(const char32_t *buf, size_t len,
                                          char16_t *utf16_output) {
  const char32_t *start = buf;
  const char32_t *end = buf + len;

  const size_t safety_margin =
      12; // to avoid overruns, see issue
          // https://github.com/simdutf/simdutf/issues/92

  while (end - buf >= std::ptrdiff_t(8 + safety_margin)) {
    __m256i in = _mm256_loadu_si256((__m256i *)buf);

    const __m256i v_00000000 = _mm256_setzero_si256();
    const __m256i v_ffff0000 = _mm256_set1_epi32((int32_t)0xffff0000);

    // no bits set above 16th bit <=> can pack to UTF16 without surrogate pairs
    const __m256i saturation_bytemask =
        _mm256_cmpeq_epi32(_mm256_and_si256(in, v_ffff0000), v_00000000);
    const uint32_t saturation_bitmask =
        static_cast<uint32_t>(_mm256_movemask_epi8(saturation_bytemask));

    if (saturation_bitmask == 0xffffffff) {
      const __m256i v_f800 = _mm256_set1_epi32((uint32_t)0xf800);
      const __m256i v_d800 = _mm256_set1_epi32((uint32_t)0xd800);
      const __m256i forbidden_bytemask =
          _mm256_cmpeq_epi32(_mm256_and_si256(in, v_f800), v_d800);
      if (static_cast<uint32_t>(_mm256_movemask_epi8(forbidden_bytemask)) !=
          0x0) {
        return std::make_pair(result(error_code::SURROGATE, buf - start),
                              utf16_output);
      }

      __m128i utf16_packed = _mm_packus_epi32(_mm256_castsi256_si128(in),
                                              _mm256_extractf128_si256(in, 1));
      if (big_endian) {
        const __m128i swap =
            _mm_setr_epi8(1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14);
        utf16_packed = _mm_shuffle_epi8(utf16_packed, swap);
      }
      _mm_storeu_si128((__m128i *)utf16_output, utf16_packed);
      utf16_output += 8;
      buf += 8;
    } else {
      size_t forward = 7;
      size_t k = 0;
      if (size_t(end - buf) < forward + 1) {
        forward = size_t(end - buf - 1);
      }
      for (; k < forward; k++) {
        uint32_t word = buf[k];
        if ((word & 0xFFFF0000) == 0) {
          // will not generate a surrogate pair
          if (word >= 0xD800 && word <= 0xDFFF) {
            return std::make_pair(
                result(error_code::SURROGATE, buf - start + k), utf16_output);
          }
          *utf16_output++ =
              big_endian
                  ? char16_t((uint16_t(word) >> 8) | (uint16_t(word) << 8))
                  : char16_t(word);
        } else {
          // will generate a surrogate pair
          if (word > 0x10FFFF) {
            return std::make_pair(
                result(error_code::TOO_LARGE, buf - start + k), utf16_output);
          }
          word -= 0x10000;
          uint16_t high_surrogate = uint16_t(0xD800 + (word >> 10));
          uint16_t low_surrogate = uint16_t(0xDC00 + (word & 0x3FF));
          if (big_endian) {
            high_surrogate =
                uint16_t((high_surrogate >> 8) | (high_surrogate << 8));
            low_surrogate =
                uint16_t((low_surrogate >> 8) | (low_surrogate << 8));
          }
          *utf16_output++ = char16_t(high_surrogate);
          *utf16_output++ = char16_t(low_surrogate);
        }
      }
      buf += k;
    }
  }

  return std::make_pair(result(error_code::SUCCESS, buf - start), utf16_output);
}