blob: d0ed78456349bc6d77e3469099945d7fb4aa916f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
#ifndef SIMDUTF_VALID_UTF8_TO_UTF16_H
#define SIMDUTF_VALID_UTF8_TO_UTF16_H
namespace simdutf {
namespace scalar {
namespace {
namespace utf8_to_utf16 {
template <endianness big_endian>
inline size_t convert_valid(const char *buf, size_t len,
char16_t *utf16_output) {
const uint8_t *data = reinterpret_cast<const uint8_t *>(buf);
size_t pos = 0;
char16_t *start{utf16_output};
while (pos < len) {
// try to convert the next block of 8 ASCII bytes
if (pos + 8 <=
len) { // if it is safe to read 8 more bytes, check that they are ascii
uint64_t v;
::memcpy(&v, data + pos, sizeof(uint64_t));
if ((v & 0x8080808080808080) == 0) {
size_t final_pos = pos + 8;
while (pos < final_pos) {
*utf16_output++ = !match_system(big_endian)
? char16_t(utf16::swap_bytes(buf[pos]))
: char16_t(buf[pos]);
pos++;
}
continue;
}
}
uint8_t leading_byte = data[pos]; // leading byte
if (leading_byte < 0b10000000) {
// converting one ASCII byte !!!
*utf16_output++ = !match_system(big_endian)
? char16_t(utf16::swap_bytes(leading_byte))
: char16_t(leading_byte);
pos++;
} else if ((leading_byte & 0b11100000) == 0b11000000) {
// We have a two-byte UTF-8, it should become
// a single UTF-16 word.
if (pos + 1 >= len) {
break;
} // minimal bound checking
uint16_t code_point = uint16_t(((leading_byte & 0b00011111) << 6) |
(data[pos + 1] & 0b00111111));
if (!match_system(big_endian)) {
code_point = utf16::swap_bytes(uint16_t(code_point));
}
*utf16_output++ = char16_t(code_point);
pos += 2;
} else if ((leading_byte & 0b11110000) == 0b11100000) {
// We have a three-byte UTF-8, it should become
// a single UTF-16 word.
if (pos + 2 >= len) {
break;
} // minimal bound checking
uint16_t code_point = uint16_t(((leading_byte & 0b00001111) << 12) |
((data[pos + 1] & 0b00111111) << 6) |
(data[pos + 2] & 0b00111111));
if (!match_system(big_endian)) {
code_point = utf16::swap_bytes(uint16_t(code_point));
}
*utf16_output++ = char16_t(code_point);
pos += 3;
} else if ((leading_byte & 0b11111000) == 0b11110000) { // 0b11110000
// we have a 4-byte UTF-8 word.
if (pos + 3 >= len) {
break;
} // minimal bound checking
uint32_t code_point = ((leading_byte & 0b00000111) << 18) |
((data[pos + 1] & 0b00111111) << 12) |
((data[pos + 2] & 0b00111111) << 6) |
(data[pos + 3] & 0b00111111);
code_point -= 0x10000;
uint16_t high_surrogate = uint16_t(0xD800 + (code_point >> 10));
uint16_t low_surrogate = uint16_t(0xDC00 + (code_point & 0x3FF));
if (!match_system(big_endian)) {
high_surrogate = utf16::swap_bytes(high_surrogate);
low_surrogate = utf16::swap_bytes(low_surrogate);
}
*utf16_output++ = char16_t(high_surrogate);
*utf16_output++ = char16_t(low_surrogate);
pos += 4;
} else {
// we may have a continuation but we do not do error checking
return 0;
}
}
return utf16_output - start;
}
} // namespace utf8_to_utf16
} // unnamed namespace
} // namespace scalar
} // namespace simdutf
#endif
|