1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
local dt = require "decisiontree._env"
-- Decision forest that ensembles a bag of decision trees.
local DecisionForest = torch.class("dt.DecisionForest", "dt.DecisionTree", dt)
function DecisionForest:__init(trees, weight, bias)
assert(torch.type(trees) == 'table')
self.trees = trees
if #trees == 0 then
self.weight = weight or torch.Tensor()
assert(torch.isTensor(self.weight))
assert(self.weight:nElement() == 0)
else
assert(torch.isTypeOf(trees[1], 'dt.DecisionTree'))
self.weight = weight or torch.Tensor(#trees):fill(1)
assert(torch.isTensor(self.weight))
assert(self.weight:dim() == 1)
assert(self.weight:min() >= 0, "Expecting positive weights")
assert(#trees == self.weight:size(1))
end
self.bias = bias or 0
assert(torch.type(self.bias) == 'number')
end
function DecisionForest:score(input, incrementalId)
assert(torch.isTensor(input))
local buffer = {}
if incrementalId then
self.buffers = self.buffers or {}
self.buffers[incrementalId] = self.buffers[incrementalId] or {}
buffer = self.buffers[incrementalId]
end
buffer.initialCounter = buffer.initialCounter or 0
-- TODO: score in parallel
local output
if torch.isTensor(input) and input.isContiguous and input:isContiguous() and input:nDimension() == 2 then
buffer.output = buffer.output or input.new()
output = buffer.output
assert(output:nElement() == 0 or output:size(1) == input:size(1))
if output:nElement() == 0 then
output:resize(input:size(1)):fill(self.bias)
end
for i,tree in ipairs(self.trees) do
if i > buffer.initialCounter then
local score = tree:score(input, nil, true)
output:add(self.weight[i], score)
end
end
else
output = buffer.output or self.bias
for i,tree in ipairs(self.trees) do
if i > buffer.initialCounter then
output = output + tree:score(input) * self.weight[i]
end
end
buffer.output = output
end
buffer.initialCounter = #self.trees
return output
end
function DecisionForest:add(tree, weight)
assert(torch.type(weight) == 'number')
assert(weight > 0)
table.insert(self.trees, tree)
self.weight:resize(#self.trees)
self.weight[#self.trees] = weight
return self
end
function DecisionForest:clone()
local trees = {}
for i, tree in ipairs(self.trees) do
trees[i] = tree:clone()
end
return DecisionForest(trees, self.weight:clone(), self.bias)
end
|