aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/torch/decisiontree/GradientBoostTrainer.lua
blob: 54d1ba8ac8ee6b67f0a83686e1ddd6f9574058dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
local dt = require "decisiontree._env"

-- Gradient boosted decision tree trainer
local GradientBoostTrainer = torch.class("dt.GradientBoostTrainer", "dt.DecisionForestTrainer", dt)

function GradientBoostTrainer:__init(opt)
   assert(torch.type(opt) == 'table')

   assert(torch.isTypeOf(opt.treeTrainer, 'dt.CartTrainer'))
   self.treeTrainer = opt.treeTrainer

   assert(torch.isTypeOf(opt.lossFunction, 'nn.Criterion'))
   self.lossFunction = opt.lossFunction

   assert(torch.type(opt.shrinkage) == 'number')
   assert(opt.shrinkage > 0)
   self.shrinkage = opt.shrinkage

   assert(torch.type(opt.downsampleRatio) == 'number')
   assert(opt.downsampleRatio > 0)
   self.downsampleRatio = opt.downsampleRatio

   assert(torch.type(opt.nTree) == 'number')
   assert(opt.nTree > 0)
   self.nTree = opt.nTree

   evalFreq = evalFreq or -1
   assert(torch.type(opt.evalFreq) == 'number')
   assert(torch.round(opt.evalFreq) == opt.evalFreq)
   self.evalFreq = opt.evalFreq

   -- when non-positive, no early-stopping
   earlyStop = earlyStop or (evalFreq-1)
   assert(torch.type(opt.earlyStop) == 'number')
   self.earlyStop = opt.earlyStop

    -- when non-positive, defaults to sqrt(#feature)
   assert(torch.type(opt.featureBaggingSize) == 'number')
   self.featureBaggingSize = opt.featureBaggingSize

   if opt.decisionForest then
      assert(torch.isTypeOf(opt.decisionForest, 'dt.DecisionForest'))
   end
   self.decisionForest = opt.decisionForest

   self.useInitBias = opt.useInitBias
end

function GradientBoostTrainer:computeBias(trainSet, verbose)
   assert(torch.isTypeOf(trainSet, 'dt.DataSet'))

   if verbose then print("Use new bias generated from the training examples.") end

   return -0.5 * self.gradInput:sum() / self.hessInput:sum()
end


function GradientBoostTrainer:initialize(trainSet, verbose)
   assert(torch.isTypeOf(trainSet, 'dt.DataSet'))

   trainSet:initScore()
   self.gradInput, self.hessInput = self.lossFunction:backward2(trainSet.score, trainSet.target)

   -- used for early-stopping (see validate())
   self.stopCount = 0
   self.prevTrainLoss = math.huge
   self.prevTestLoss = math.huge

   if verbose then print("Processing initial decision forest") end

   local decisionForest, bias

   if self.decisionForest then
      local bias = self.useInitBias and self.decisionForest.bias or self:computeBias(trainSet, verbose)

      decisionForest = dt.DecisionForest(self.decisionForest.trees, self.decisionForest.weight, bias)

      local input = trainSet.input
      if torch.isTensor(input) and input.isContiguous and input:isContiguous() then
         score = decisionForest:score(input)
      else
         score:resize(trainSet:size())
         for exampleId=1,trainSet:size() do
            score[exampleId] = decisionForest:score(input[exampleId])
         end
      end
   else
      local bias = self:computeBias(trainSet, verbose)
      decisionForest = dt.DecisionForest({}, torch.Tensor(), bias)

      trainSet.score:fill(bias)
   end

   if verbose then print("Finish loading initial decision forest") end

   return decisionForest
end

-- Trains a decision forest of boosted decision trees.
-- examples are the training examples. validExamples are used for cross-validation.
function GradientBoostTrainer:train(trainSet, featureIds, validSet, verbose)
   assert(torch.isTypeOf(trainSet, 'dt.DataSet'))
   assert(torch.type(featureIds) == 'torch.LongTensor')
   assert(torch.isTypeOf(validSet, 'dt.DataSet'))

   local decisionForest = self:initialize(trainSet, verbose)
   local bestDecisionForest

   if verbose then print(string.format("Get %d featureIds.", featureIds:size(1))) end

   local baggingSize = self.featureBaggingSize > 0 and self.featureBaggingSize or torch.round(math.sqrt(featureIds:size(1)))
   local trainExampleIds = trainSet:getExampleIds()
   local baggingIndices, activeFeatures
   local treeExampleIds

   local timer = torch.Timer()

   for treeId = 1,self.nTree do
      timer:reset()
      if verbose then print(string.format("Begin processing tree number %d of %d", treeId, self.nTree)) end

      -- Get active features
      activeFeatures = activeFeatures or torch.LongTensor()
      if baggingSize < featureIds:size(1) then
         if verbose then print(string.format("Tree %d: Bagging %d from %d features", treeId, baggingSize, featureIds:size(1))) end

         baggingIndices = baggingIndices or torch.LongTensor()
         baggingIndices:randperm(featureIds:size(1))
         activeFeatures:index(featureIds, 1, baggingIndices:narrow(1,1,baggingSize))
      else
         activeFeatures = featureIds
      end

      -- Get data samples
      if self.downsampleRatio < 0.99 then
         local sampleSize = torch.round(trainSet:size() * self.downsampleRatio)

         if verbose then print(string.format("Tree %d: Downsampling %d of %d samples", treeId, sampleSize, trainSet:size())) end

         baggingIndices = baggingIndices or torch.LongTensor()
         baggingIndices:randperm(trainSet:size())

         treeExampleIds = treeExampleIds or torch.LongTensor()
         treeExampleIds:index(trainExampleIds, 1, baggingIndices:narrow(1,1,sampleSize))
      else
         treeExampleIds = trainExampleIds
      end

      if verbose then print(string.format("Tree %d: training CART tree", treeId)) end

      local rootTreeState = dt.GradientBoostState(treeExampleIds, self.gradInput, self.hessInput)
      local cartTree = self.treeTrainer:train(rootTreeState, activeFeatures)

      if verbose then print(string.format("Tree %d: finished training CART tree in %f seconds", treeId, timer:time().real)) end

      decisionForest:add(cartTree, self.shrinkage)

      -- update score
      local predictionScore
      local input = trainSet.input
      if torch.isTensor(input) and input:isContiguous() then
         predictionScore = cartTree:score(trainSet.input, nil, true)
      else
         local size = trainSet:size()
         predictionScore = torch.Tensor(size)
         for exampleId=1,size do
            predictionScore[exampleId] = cartTree:score(trainSet.input[exampleId])
         end
      end
      trainSet.score:add(self.shrinkage, predictionScore)
      self.gradInput, self.hessInput = self.lossFunction:backward2(trainSet.score, trainSet.target)

      if verbose then print(string.format("Tree %d: training complete in %f seconds", treeId, timer:time().real)) end

      -- cross-validation/early-stopping
      if self.evalFreq > 0 and treeId % self.evalFreq == 0 then
         timer:reset()
         local stop, validLoss, bestDecisionForest = self:validate(trainSet, validSet, decisionForest, bestDecisionForest)
         if dt.PROFILE then print("validate tree time: "..timer:time().real) end
         if verbose then print(string.format("Loss: train=%7.4f, valid=%7.4f", trainLoss, validLoss)) end
         if stop then
            if verbose then print(string.format("GBDT early stopped on tree %d", treeId)) end
            break
         end

      end
   end

   return bestDecisionForest or decisionForest
end

function dt.GradientBoostTrainer:validate(trainSet, validSet, decisionForest, bestDecisionForest)
   assert(torch.isTypeOf(trainSet, 'dt.DataSet'))
   assert(torch.isTypeOf(validSet, 'dt.DataSet'))
   assert(torch.isTypeOf(decisionForest, 'dt.DecisionForest'))
   assert(not bestDecisionForest or torch.isTypeOf(decisionForest, 'dt.DecisionForest'))

   -- buffer
   local buffer = dt.getBufferTable('GradientBoost')
   buffer.tensor = buffer.tensor or trainSet.score.new()
   local score = buffer.tensor

   -- per thread loss function (tensors are shared)
   local lossname = torch.typename(self.lossFunction)
   buffer[lossname] = buffer[lossname] or self.lossFunction:clone()
   local lossFunction = buffer[lossname]

   -- TODO batch this for large datasets
   local input = validSet.input
   if torch.isTensor(input) and input.isContiguous and input:isContiguous() then
      score = decisionForest:score(input, 'val')
   else
      score:resize(validSet:size())
      for exampleId=1,validSet:size() do
         score[exampleId] = decisionForest:score(input[exampleId], 'val')
      end
   end
   local validLoss = lossFunction:forward(score, validSet.target)

   -- early stop is not enabled when earlyStop=0
   local stop = false
   if self.earlyStop > 0 then
      -- Track test loss and detect early stop
      if self.prevTestLoss - validLoss < 0 then
         self.stopCount = self.stopCount + 1
      else
         bestDecisionForest = decisionForest:clone()
         self.stopCount = 0
      end

      stop = self.stopCount >= self.earlyStop
   end

   self.prevTestLoss = validLoss

   return stop, validLoss, bestDecisionForest
end

function GradientBoostTrainer:getName()
   return string.format(
      "gbdt-dRatio-%s-maxLeaf-%s-minExample-%s-nTree-%s-shrinkage-%s",
      self.downsampleRatio, self.maxLeafNodes, self.minLeafSize, self.nTree, self.shrinkage
   )
end