1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
local dt = require "decisiontree._env"
-- Gradient boosted decision tree trainer
local GradientBoostTrainer = torch.class("dt.GradientBoostTrainer", "dt.DecisionForestTrainer", dt)
function GradientBoostTrainer:__init(opt)
assert(torch.type(opt) == 'table')
assert(torch.isTypeOf(opt.treeTrainer, 'dt.CartTrainer'))
self.treeTrainer = opt.treeTrainer
assert(torch.isTypeOf(opt.lossFunction, 'nn.Criterion'))
self.lossFunction = opt.lossFunction
assert(torch.type(opt.shrinkage) == 'number')
assert(opt.shrinkage > 0)
self.shrinkage = opt.shrinkage
assert(torch.type(opt.downsampleRatio) == 'number')
assert(opt.downsampleRatio > 0)
self.downsampleRatio = opt.downsampleRatio
assert(torch.type(opt.nTree) == 'number')
assert(opt.nTree > 0)
self.nTree = opt.nTree
evalFreq = evalFreq or -1
assert(torch.type(opt.evalFreq) == 'number')
assert(torch.round(opt.evalFreq) == opt.evalFreq)
self.evalFreq = opt.evalFreq
-- when non-positive, no early-stopping
earlyStop = earlyStop or (evalFreq-1)
assert(torch.type(opt.earlyStop) == 'number')
self.earlyStop = opt.earlyStop
-- when non-positive, defaults to sqrt(#feature)
assert(torch.type(opt.featureBaggingSize) == 'number')
self.featureBaggingSize = opt.featureBaggingSize
if opt.decisionForest then
assert(torch.isTypeOf(opt.decisionForest, 'dt.DecisionForest'))
end
self.decisionForest = opt.decisionForest
self.useInitBias = opt.useInitBias
end
function GradientBoostTrainer:computeBias(trainSet, verbose)
assert(torch.isTypeOf(trainSet, 'dt.DataSet'))
if verbose then print("Use new bias generated from the training examples.") end
return -0.5 * self.gradInput:sum() / self.hessInput:sum()
end
function GradientBoostTrainer:initialize(trainSet, verbose)
assert(torch.isTypeOf(trainSet, 'dt.DataSet'))
trainSet:initScore()
self.gradInput, self.hessInput = self.lossFunction:backward2(trainSet.score, trainSet.target)
-- used for early-stopping (see validate())
self.stopCount = 0
self.prevTrainLoss = math.huge
self.prevTestLoss = math.huge
if verbose then print("Processing initial decision forest") end
local decisionForest, bias
if self.decisionForest then
local bias = self.useInitBias and self.decisionForest.bias or self:computeBias(trainSet, verbose)
decisionForest = dt.DecisionForest(self.decisionForest.trees, self.decisionForest.weight, bias)
local input = trainSet.input
if torch.isTensor(input) and input.isContiguous and input:isContiguous() then
score = decisionForest:score(input)
else
score:resize(trainSet:size())
for exampleId=1,trainSet:size() do
score[exampleId] = decisionForest:score(input[exampleId])
end
end
else
local bias = self:computeBias(trainSet, verbose)
decisionForest = dt.DecisionForest({}, torch.Tensor(), bias)
trainSet.score:fill(bias)
end
if verbose then print("Finish loading initial decision forest") end
return decisionForest
end
-- Trains a decision forest of boosted decision trees.
-- examples are the training examples. validExamples are used for cross-validation.
function GradientBoostTrainer:train(trainSet, featureIds, validSet, verbose)
assert(torch.isTypeOf(trainSet, 'dt.DataSet'))
assert(torch.type(featureIds) == 'torch.LongTensor')
assert(torch.isTypeOf(validSet, 'dt.DataSet'))
local decisionForest = self:initialize(trainSet, verbose)
local bestDecisionForest
if verbose then print(string.format("Get %d featureIds.", featureIds:size(1))) end
local baggingSize = self.featureBaggingSize > 0 and self.featureBaggingSize or torch.round(math.sqrt(featureIds:size(1)))
local trainExampleIds = trainSet:getExampleIds()
local baggingIndices, activeFeatures
local treeExampleIds
local timer = torch.Timer()
for treeId = 1,self.nTree do
timer:reset()
if verbose then print(string.format("Begin processing tree number %d of %d", treeId, self.nTree)) end
-- Get active features
activeFeatures = activeFeatures or torch.LongTensor()
if baggingSize < featureIds:size(1) then
if verbose then print(string.format("Tree %d: Bagging %d from %d features", treeId, baggingSize, featureIds:size(1))) end
baggingIndices = baggingIndices or torch.LongTensor()
baggingIndices:randperm(featureIds:size(1))
activeFeatures:index(featureIds, 1, baggingIndices:narrow(1,1,baggingSize))
else
activeFeatures = featureIds
end
-- Get data samples
if self.downsampleRatio < 0.99 then
local sampleSize = torch.round(trainSet:size() * self.downsampleRatio)
if verbose then print(string.format("Tree %d: Downsampling %d of %d samples", treeId, sampleSize, trainSet:size())) end
baggingIndices = baggingIndices or torch.LongTensor()
baggingIndices:randperm(trainSet:size())
treeExampleIds = treeExampleIds or torch.LongTensor()
treeExampleIds:index(trainExampleIds, 1, baggingIndices:narrow(1,1,sampleSize))
else
treeExampleIds = trainExampleIds
end
if verbose then print(string.format("Tree %d: training CART tree", treeId)) end
local rootTreeState = dt.GradientBoostState(treeExampleIds, self.gradInput, self.hessInput)
local cartTree = self.treeTrainer:train(rootTreeState, activeFeatures)
if verbose then print(string.format("Tree %d: finished training CART tree in %f seconds", treeId, timer:time().real)) end
decisionForest:add(cartTree, self.shrinkage)
-- update score
local predictionScore
local input = trainSet.input
if torch.isTensor(input) and input:isContiguous() then
predictionScore = cartTree:score(trainSet.input, nil, true)
else
local size = trainSet:size()
predictionScore = torch.Tensor(size)
for exampleId=1,size do
predictionScore[exampleId] = cartTree:score(trainSet.input[exampleId])
end
end
trainSet.score:add(self.shrinkage, predictionScore)
self.gradInput, self.hessInput = self.lossFunction:backward2(trainSet.score, trainSet.target)
if verbose then print(string.format("Tree %d: training complete in %f seconds", treeId, timer:time().real)) end
-- cross-validation/early-stopping
if self.evalFreq > 0 and treeId % self.evalFreq == 0 then
timer:reset()
local stop, validLoss, bestDecisionForest = self:validate(trainSet, validSet, decisionForest, bestDecisionForest)
if dt.PROFILE then print("validate tree time: "..timer:time().real) end
if verbose then print(string.format("Loss: train=%7.4f, valid=%7.4f", trainLoss, validLoss)) end
if stop then
if verbose then print(string.format("GBDT early stopped on tree %d", treeId)) end
break
end
end
end
return bestDecisionForest or decisionForest
end
function dt.GradientBoostTrainer:validate(trainSet, validSet, decisionForest, bestDecisionForest)
assert(torch.isTypeOf(trainSet, 'dt.DataSet'))
assert(torch.isTypeOf(validSet, 'dt.DataSet'))
assert(torch.isTypeOf(decisionForest, 'dt.DecisionForest'))
assert(not bestDecisionForest or torch.isTypeOf(decisionForest, 'dt.DecisionForest'))
-- buffer
local buffer = dt.getBufferTable('GradientBoost')
buffer.tensor = buffer.tensor or trainSet.score.new()
local score = buffer.tensor
-- per thread loss function (tensors are shared)
local lossname = torch.typename(self.lossFunction)
buffer[lossname] = buffer[lossname] or self.lossFunction:clone()
local lossFunction = buffer[lossname]
-- TODO batch this for large datasets
local input = validSet.input
if torch.isTensor(input) and input.isContiguous and input:isContiguous() then
score = decisionForest:score(input, 'val')
else
score:resize(validSet:size())
for exampleId=1,validSet:size() do
score[exampleId] = decisionForest:score(input[exampleId], 'val')
end
end
local validLoss = lossFunction:forward(score, validSet.target)
-- early stop is not enabled when earlyStop=0
local stop = false
if self.earlyStop > 0 then
-- Track test loss and detect early stop
if self.prevTestLoss - validLoss < 0 then
self.stopCount = self.stopCount + 1
else
bestDecisionForest = decisionForest:clone()
self.stopCount = 0
end
stop = self.stopCount >= self.earlyStop
end
self.prevTestLoss = validLoss
return stop, validLoss, bestDecisionForest
end
function GradientBoostTrainer:getName()
return string.format(
"gbdt-dRatio-%s-maxLeaf-%s-minExample-%s-nTree-%s-shrinkage-%s",
self.downsampleRatio, self.maxLeafNodes, self.minLeafSize, self.nTree, self.shrinkage
)
end
|