blob: 2f72cf87f486fce1a5a4e27e8a61aef484b09e8d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
local CrossEntropyCriterion, Criterion = torch.class('nn.CrossEntropyCriterion', 'nn.Criterion')
function CrossEntropyCriterion:__init(weights, sizeAverage)
Criterion.__init(self)
self.lsm = nn.LogSoftMax()
self.nll = nn.ClassNLLCriterion(weights, sizeAverage)
self.sizeAverage = self.nll.sizeAverage
self.oldSizeAverage = self.sizeAverage
end
function CrossEntropyCriterion:updateOutput(input, target)
input = input:squeeze()
target = type(target) == 'number' and target or target:squeeze()
-- only propagate if value has changed to preserve old behavior
-- of setting nll.sizeAverage directly
if self.sizeAverage ~= self.oldSizeAverage then
self.nll.sizeAverage = self.sizeAverage
end
self.lsm:updateOutput(input)
self.nll:updateOutput(self.lsm.output, target)
self.output = self.nll.output
self.oldSizeAverage = self.sizeAverage
return self.output
end
function CrossEntropyCriterion:updateGradInput(input, target)
local size = input:size()
input = input:squeeze()
target = type(target) == 'number' and target or target:squeeze()
-- only propagate if value has changed to preserve old behavior
-- of setting nll.sizeAverage directly
if self.sizeAverage ~= self.oldSizeAverage then
self.nll.sizeAverage = self.sizeAverage
end
self.nll:updateGradInput(self.lsm.output, target)
self.lsm:updateGradInput(input, self.nll.gradInput)
self.gradInput:view(self.lsm.gradInput, size)
self.oldSizeAverage = self.sizeAverage
return self.gradInput
end
return nn.CrossEntropyCriterion
|