aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/torch/torch7/Tensor.lua
blob: 9a8215be1f26624878317126ccf3477edfa45f98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
-- additional methods for Storage
local Storage = {}

-- additional methods for Tensor
local Tensor = {}

-- types
local types = {'Byte', 'Char', 'Short', 'Int', 'Long', 'Float', 'Half', 'Double'}

-- Lua 5.2 compatibility
local log10 = math.log10 or function(x) return math.log(x, 10) end

-- tostring() functions for Tensor and Storage
local function Storage__printformat(self)
   if self:size() == 0 then
     return "", nil, 0
   end
   local intMode = true
   local type = torch.typename(self)
--   if type == 'torch.FloatStorage' or type == 'torch.DoubleStorage' then
      for i=1,self:size() do
         if self[i] ~= math.ceil(self[i]) then
            intMode = false
            break
         end
      end
--   end
   local tensor = torch.DoubleTensor(torch.DoubleStorage(self:size()):copy(self), 1, self:size()):abs()
   local expMin = tensor:min()
   if expMin ~= 0 then
      expMin = math.floor(log10(expMin)) + 1
   else
      expMin = 1
   end
   local expMax = tensor:max()
   if expMax ~= 0 then
      expMax = math.floor(log10(expMax)) + 1
   else
      expMax = 1
   end

   local format
   local scale
   local sz
   if intMode then
      if expMax > 9 then
         format = "%11.4e"
         sz = 11
      else
         format = "%SZd"
         sz = expMax + 1
      end
   else
      if expMax-expMin > 4 then
         format = "%SZ.4e"
         sz = 11
         if math.abs(expMax) > 99 or math.abs(expMin) > 99 then
            sz = sz + 1
         end
      else
         if expMax > 5 or expMax < 0 then
            format = "%SZ.4f"
            sz = 7
            scale = math.pow(10, expMax-1)
         else
            format = "%SZ.4f"
            if expMax == 0 then
               sz = 7
            else
               sz = expMax+6
            end
         end
      end
   end
   format = string.gsub(format, 'SZ', sz)
   if scale == 1 then
      scale = nil
   end
   return format, scale, sz
end

function Storage.__tostring__(self)
   local strt = {}
   local format,scale = Storage__printformat(self)
   if format:sub(2,4) == 'nan' then format = '%f' end
   if scale then
      table.insert(strt, string.format('%g', scale) .. ' *\n')
      for i = 1,self:size() do
         table.insert(strt, string.format(format, self[i]/scale) .. '\n')
      end
   else
      for i = 1,self:size() do
         table.insert(strt, string.format(format, self[i]) .. '\n')
      end
   end
   table.insert(strt, '[' .. torch.typename(self) .. ' of size ' .. self:size() .. ']\n')
   local str = table.concat(strt)
   return str
end

for _,type in ipairs(types) do
   local metatable = torch.getmetatable('torch.' .. type .. 'Storage')
   for funcname, func in pairs(Storage) do
      rawset(metatable, funcname, func)
   end
end

local function Tensor__printMatrix(self, indent)
   local format,scale,sz = Storage__printformat(self:storage())
   if format:sub(2,4) == 'nan' then format = '%f' end
--   print('format = ' .. format)
   scale = scale or 1
   indent = indent or ''
   local strt = {indent}
   local nColumnPerLine = math.floor((80-#indent)/(sz+1))
--   print('sz = ' .. sz .. ' and nColumnPerLine = ' .. nColumnPerLine)
   local firstColumn = 1
   local lastColumn = -1
   while firstColumn <= self:size(2) do
      if firstColumn + nColumnPerLine - 1 <= self:size(2) then
         lastColumn = firstColumn + nColumnPerLine - 1
      else
         lastColumn = self:size(2)
      end
      if nColumnPerLine < self:size(2) then
         if firstColumn ~= 1 then
            table.insert(strt, '\n')
         end
         table.insert(strt, 'Columns ' .. firstColumn .. ' to ' .. lastColumn .. '\n' .. indent)
      end
      if scale ~= 1 then
         table.insert(strt, string.format('%g', scale) .. ' *\n ' .. indent)
      end
      for l=1,self:size(1) do
         local row = self:select(1, l)
         for c=firstColumn,lastColumn do
            table.insert(strt, string.format(format, row[c]/scale))
            if c == lastColumn then
               table.insert(strt, '\n')
               if l~=self:size(1) then
                  if scale ~= 1 then
                     table.insert(strt, indent .. ' ')
                  else
                     table.insert(strt, indent)
                  end
               end
            else
               table.insert(strt, ' ')
            end
         end
      end
      firstColumn = lastColumn + 1
   end
   local str = table.concat(strt)
   return str
end

local function Tensor__printTensor(self)
   local counter = torch.LongStorage(self:nDimension()-2)
   local strt = {''}
   local finished
   counter:fill(1)
   counter[1] = 0
   while true do
      for i=1,self:nDimension()-2 do
         counter[i] = counter[i] + 1
         if counter[i] > self:size(i) then
            if i == self:nDimension()-2 then
               finished = true
               break
            end
            counter[i] = 1
         else
            break
         end
      end
      if finished then
         break
      end
--      print(counter)
      if #strt > 1 then
         table.insert(strt, '\n')
      end
      table.insert(strt, '(')
      local tensor = self
      for i=1,self:nDimension()-2 do
         tensor = tensor:select(1, counter[i])
         table.insert(strt, counter[i] .. ',')
      end
      table.insert(strt, '.,.) = \n')
      table.insert(strt, Tensor__printMatrix(tensor, ' '))
   end
   return table.concat(strt)
end

function Tensor.__tostring__(self)
   local strt = {''}
   if self:nDimension() == 0 then
      table.insert(strt, '[' .. torch.typename(self) .. ' with no dimension]\n')
   else
      local tensor = torch.DoubleTensor():resize(self:size()):copy(self)
      if tensor:nDimension() == 1 then
         local format,scale,sz = Storage__printformat(tensor:storage())
         if format:sub(2,4) == 'nan' then format = '%f' end
         if scale then
            table.insert(strt, string.format('%g', scale) .. ' *\n')
            for i = 1,tensor:size(1) do
               table.insert(strt, string.format(format, tensor[i]/scale) .. '\n')
            end
         else
            for i = 1,tensor:size(1) do
               table.insert(strt, string.format(format, tensor[i]) .. '\n')
            end
         end
         table.insert(strt, '[' .. torch.typename(self) .. ' of size ' .. tensor:size(1) .. ']\n')
      elseif tensor:nDimension() == 2 then
         table.insert(strt, Tensor__printMatrix(tensor))
         table.insert(strt, '[' .. torch.typename(self) .. ' of size ' .. tensor:size(1) .. 'x' .. tensor:size(2) .. ']\n')
      else
         table.insert(strt, Tensor__printTensor(tensor))
         table.insert(strt, '[' .. torch.typename(self) .. ' of size ')
         for i=1,tensor:nDimension() do
            table.insert(strt, tensor:size(i))
            if i ~= tensor:nDimension() then
               table.insert(strt, 'x')
            end
         end
         table.insert(strt, ']\n')
      end
   end
   return table.concat(strt)
end

function Tensor.type(self,type)
   local current = torch.typename(self)
   if not type then return current end
   if type ~= current then
      local new = torch.getmetatable(type).new()
      if self:nElement() > 0 then
         new:resize(self:size()):copy(self)
      end
      return new
   else
      return self
   end
end

function Tensor.typeAs(self,tensor)
   return self:type(tensor:type())
end

function Tensor.byte(self)
   return self:type('torch.ByteTensor')
end

function Tensor.char(self)
   return self:type('torch.CharTensor')
end

function Tensor.short(self)
   return self:type('torch.ShortTensor')
end

function Tensor.int(self)
   return self:type('torch.IntTensor')
end

function Tensor.long(self)
   return self:type('torch.LongTensor')
end

function Tensor.float(self)
   return self:type('torch.FloatTensor')
end

function Tensor.double(self)
   return self:type('torch.DoubleTensor')
end

function Tensor.half(self)
   return self:type('torch.HalfTensor')
end

function Tensor.real(self)
   return self:type(torch.getdefaulttensortype())
end

function Tensor.expand(result,tensor,...)
   -- get sizes
   local sizes = {...}

   local t = torch.type(tensor)
   if (t == 'number' or t == 'torch.LongStorage') then
      table.insert(sizes,1,tensor)
      tensor = result
      result = tensor.new()
   end

   -- check type
   local size
   if torch.type(sizes[1])=='torch.LongStorage' then
      size = sizes[1]
   else
      size = torch.LongStorage(#sizes)
      for i,s in ipairs(sizes) do
         size[i] = s
      end
   end

   -- get dimensions
   local tensor_dim = tensor:dim()
   local tensor_stride = tensor:stride()
   local tensor_size = tensor:size()

   -- check nb of dimensions
   if #size ~= tensor:dim() then
      error('the number of dimensions provided must equal tensor:dim()')
   end

   -- create a new geometry for tensor:
   for i = 1,tensor_dim do
      if tensor_size[i] == 1 then
         tensor_size[i] = size[i]
         tensor_stride[i] = 0
      elseif tensor_size[i] ~= size[i] then
         error('incorrect size: only supporting singleton expansion (size=1)')
      end
   end

   -- create new view, with singleton expansion:
   result:set(tensor:storage(), tensor:storageOffset(),
                         tensor_size, tensor_stride)
   return result
end
torch.expand = Tensor.expand

function Tensor.expandAs(result,tensor,template)
   if template then
      return result:expand(tensor,template:size())
   end
   return result:expand(tensor:size())
end
torch.expandAs = Tensor.expandAs

function Tensor.repeatTensor(result,tensor,...)
   -- get sizes
   local sizes = {...}

   local t = torch.type(tensor)
   if (t == 'number' or t == 'torch.LongStorage') then
      table.insert(sizes,1,tensor)
      tensor = result
      result = tensor.new()
   end
   -- if not contiguous, then force the tensor to be contiguous
   if not tensor:isContiguous() then tensor = tensor:clone() end

   -- check type
   local size
   if torch.type(sizes[1])=='torch.LongStorage' then
      size = sizes[1]
   else
      size = torch.LongStorage(#sizes)
      for i,s in ipairs(sizes) do
         size[i] = s
      end
   end
   if size:size() < tensor:dim() then
      error('Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor')
   end
   local xtensor = tensor.new():set(tensor)
   local xsize = xtensor:size():totable()
   for i=1,size:size()-tensor:dim() do
      table.insert(xsize,1,1)
   end
   size = torch.DoubleTensor(xsize):cmul(torch.DoubleTensor(size:totable())):long():storage()
   xtensor:resize(torch.LongStorage(xsize))
   result:resize(size)
   local urtensor = result.new(result)
   for i=1,xtensor:dim() do
      urtensor = urtensor:unfold(i,xtensor:size(i),xtensor:size(i))
   end
   for i=1,urtensor:dim()-xtensor:dim() do
      table.insert(xsize,1,1)
   end
   xtensor:resize(torch.LongStorage(xsize))
   local xxtensor = xtensor:expandAs(urtensor)
   urtensor:copy(xxtensor)
   return result
end
torch.repeatTensor = Tensor.repeatTensor

--- One of the size elements can be -1,
 --- a new LongStorage is then returned.
 --- The length of the unspecified dimension
 --- is inferred from the number of remaining elements.
local function specifyFully(size, nElements)
    local nCoveredElements = 1
    local remainingDim = nil
    local sizes = size:totable()
    for i = 1, #sizes do
        local wantedDimSize = sizes[i]
        if wantedDimSize == -1 then
            if remainingDim then
                error("Only one of torch.view dimensions can be -1.")
            end
            remainingDim = i
        else
            nCoveredElements = nCoveredElements * wantedDimSize
        end
    end

    if not remainingDim then
        return size
    end

    assert(nElements % nCoveredElements == 0, "The number of covered elements is not a multiple of all elements.")
    local copy = torch.LongStorage(sizes)
    copy[remainingDim] = nElements / nCoveredElements
    return copy
end

-- TODO : This should be implemented in TH and and wrapped.
function Tensor.view(result, src, ...)
   local size = ...
   local view, tensor
   local function istensor(tensor)
      return torch.typename(tensor) and torch.typename(tensor):find('torch.*Tensor')
   end
   local function isstorage(storage)
      return torch.typename(storage) and torch.typename(storage) == 'torch.LongStorage'
   end
   if istensor(result) and istensor(src) and type(size) == 'number' then
      size = torch.LongStorage{...}
      view = result
      tensor = src
   elseif istensor(result) and istensor(src) and isstorage(size) then
      size = size
      view = result
      tensor = src
   elseif istensor(result) and isstorage(src) and size == nil then
      size = src
      tensor = result
      view = tensor.new()
   elseif istensor(result) and type(src) == 'number' then
      size = {...}
      table.insert(size,1,src)
      size = torch.LongStorage(size)
      tensor = result
      view = tensor.new()
   else
      local t1 = 'torch.Tensor, torch.Tensor, number [, number ]*'
      local t2 = 'torch.Tensor, torch.Tensor, torch.LongStorage'
      local t3 = 'torch.Tensor, torch.LongStorage'
      local t4 = 'torch.Tensor, number [, number ]*'
      error(string.format('torch.view, expected (%s) or\n (%s) or\n (%s)\n or (%s)', t1, t2, t3, t4))
   end
   local origNElement = tensor:nElement()
   size = specifyFully(size, origNElement)

   assert(tensor:isContiguous(), "expecting a contiguous tensor")
   view:set(tensor:storage(), tensor:storageOffset(), size)
   if view:nElement() ~= origNElement then
      local inputSize = table.concat(tensor:size():totable(), "x")
      local outputSize = table.concat(size:totable(), "x")
      error(string.format("Wrong size for view. Input size: %s. Output size: %s",
      inputSize, outputSize))
   end
   return view
end
torch.view = Tensor.view

function Tensor.viewAs(result, src, template)
   if template and torch.typename(template) then
      return result:view(src, template:size())
   elseif template == nil then
      template = src
      src = result
      result = src.new()
      return result:view(src, template:size())
   else
      local t1 = 'torch.Tensor, torch.Tensor, torch.LongStorage'
      local t2 = 'torch.Tensor, torch.LongStorage'
      error(string.format('expecting (%s) or (%s)', t1, t2))
   end
end
torch.viewAs = Tensor.viewAs

function Tensor.split(result, tensor, splitSize, dim)
   if torch.type(result) ~= 'table' then
      dim = splitSize
      splitSize = tensor
      tensor = result
      result = {}
   else
      -- empty existing result table before using it
      for k,v in pairs(result) do
         result[k] = nil
      end
   end
   dim = dim or 1
   local start = 1
   while start <= tensor:size(dim) do
      local size = math.min(splitSize, tensor:size(dim) - start + 1)
      local split = tensor:narrow(dim, start, size)
      table.insert(result, split)
      start = start + size
   end
   return result
end
torch.split = Tensor.split

function Tensor.chunk(result, tensor, nChunk, dim)
   if torch.type(result) ~= 'table' then
      dim = nChunk
      nChunk = tensor
      tensor = result
      result = {}
   end
   dim = dim or 1
   local splitSize = math.ceil(tensor:size(dim)/nChunk)
   return torch.split(result, tensor, splitSize, dim)
end
torch.chunk = Tensor.chunk

function Tensor.totable(tensor)
  local result = {}
  local dim = tensor:dim()
  if dim == 1 then
    tensor:apply(function(i) table.insert(result, i) end)
  elseif dim > 0 then
    for i = 1, tensor:size(1) do
      table.insert(result, tensor[i]:totable())
    end
  end
  return result
end
torch.totable = Tensor.totable

function Tensor.permute(tensor, ...)
  local perm = {...}
  local nDims = tensor:dim()
  assert(#perm == nDims, 'Invalid permutation')
  local j
  for i, p in ipairs(perm) do
    if p ~= i and p ~= 0 then
      j = i
      repeat
        assert(0 < perm[j] and perm[j] <= nDims, 'Invalid permutation')
        tensor = tensor:transpose(j, perm[j])
        j, perm[j] = perm[j], 0
      until perm[j] == i
      perm[j] = j
    end
  end
  return tensor
end
torch.permute = Tensor.permute

for _,type in ipairs(types) do
   local metatable = torch.getmetatable('torch.' .. type .. 'Tensor')
   for funcname, func in pairs(Tensor) do
      if funcname ~= 'totable' or type ~='Half' then
         rawset(metatable, funcname, func)
      else
         local function Tensor__totable(self)
            local host_tensor = self:float()
            return self:float():totable()
         end
         rawset(torch.getmetatable('torch.HalfTensor'), 'totable', Tensor__totable)
      end
   end
end