1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
--[[
Copyright (c) 2020, Vsevolod Stakhov <vsevolod@highsecure.ru>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--
local argparse = require "argparse"
local lua_clickhouse = require "lua_clickhouse"
local lua_util = require "lua_util"
local rspamd_http = require "rspamd_http"
local rspamd_upstream_list = require "rspamd_upstream_list"
local ucl = require "ucl"
local E = {}
-- Define command line options
local parser = argparse()
:name 'rspamadm clickhouse'
:description 'Retrieve information from Clickhouse'
:help_description_margin(30)
:command_target('command')
:require_command(true)
parser:option '-c --config'
:description 'Path to config file'
:argname('config_file')
:default(rspamd_paths['CONFDIR'] .. '/rspamd.conf')
parser:option '-d --database'
:description 'Name of Clickhouse database to use'
:argname('database')
:default('default')
parser:flag '--no-ssl-verify'
:description 'Disable SSL verification'
:argname('no_ssl_verify')
parser:mutex(
parser:option '-p --password'
:description 'Password to use for Clickhouse'
:argname('password'),
parser:flag '-a --ask-password'
:description 'Ask password from the terminal'
:argname('ask_password')
)
parser:option '-s --server'
:description 'Address[:port] to connect to Clickhouse with'
:argname('server')
parser:option '-u --user'
:description 'Username to use for Clickhouse'
:argname('user')
parser:option '--use-gzip'
:description 'Use Gzip with Clickhouse'
:argname('use_gzip')
:default(true)
parser:flag '--use-https'
:description 'Use HTTPS with Clickhouse'
:argname('use_https')
local neural_profile = parser:command 'neural_profile'
:description 'Generate symbols profile using data from Clickhouse'
neural_profile:option '-w --where'
:description 'WHERE clause for Clickhouse query'
:argname('where')
neural_profile:flag '-j --json'
:description 'Write output as JSON'
:argname('json')
neural_profile:option '--days'
:description 'Number of days to collect stats for'
:argname('days')
:default('7')
neural_profile:option '--limit -l'
:description 'Maximum rows to fetch per day'
:argname('limit')
neural_profile:option '--settings-id'
:description 'Settings ID to query'
:argname('settings_id')
:default('')
local neural_train = parser:command 'neural_train'
:description 'Train neural using data from Clickhouse'
neural_train:option '--days'
:description 'Number of days to query data for'
:argname('days')
:default('7')
neural_train:option '--column-name-digest'
:description 'Name of neural profile digest column in Clickhouse'
:argname('column_name_digest')
:default('NeuralDigest')
neural_train:option '--column-name-vector'
:description 'Name of neural training vector column in Clickhouse'
:argname('column_name_vector')
:default('NeuralMpack')
neural_train:option '--limit -l'
:description 'Maximum rows to fetch per day'
:argname('limit')
neural_train:option '--profile -p'
:description 'Profile to use for training'
:argname('profile')
:default('default')
neural_train:option '--rule -r'
:description 'Rule to train'
:argname('rule')
:default('default')
neural_train:option '--spam -s'
:description 'WHERE clause to use for spam'
:argname('spam')
:default("Action == 'reject'")
neural_train:option '--ham -h'
:description 'WHERE clause to use for ham'
:argname('ham')
:default('Score < 0')
neural_train:option '--url -u'
:description 'URL to use for training'
:argname('url')
:default('http://127.0.0.1:11334/plugins/neural/learn')
local http_params = {
config = rspamd_config,
ev_base = rspamadm_ev_base,
session = rspamadm_session,
resolver = rspamadm_dns_resolver,
}
local function load_config(config_file)
local _r,err = rspamd_config:load_ucl(config_file)
if not _r then
io.stderr:write(string.format('cannot parse %s: %s',
config_file, err))
os.exit(1)
end
end
local function days_list(days)
-- Create list of days to query starting with yesterday
local query_days = {}
local previous_date = os.time() - 86400
local num_days = tonumber(days)
for _ = 1, num_days do
table.insert(query_days, os.date('%Y-%m-%d', previous_date))
previous_date = previous_date - 86400
end
return query_days
end
local function get_excluded_symbols(known_symbols, correlations, seen_total)
-- Walk results once to collect all symbols & count ocurrences
local remove = {}
local known_symbols_list = {}
local composites = rspamd_config:get_all_opt('composites')
for k, v in pairs(known_symbols) do
local lower_count, higher_count
if v.seen_spam > v.seen_ham then
lower_count = v.seen_ham
higher_count = v.seen_spam
else
lower_count = v.seen_spam
higher_count = v.seen_ham
end
if composites[k] then
remove[k] = 'composite symbol'
elseif lower_count / higher_count >= 0.95 then
remove[k] = 'weak ham/spam correlation'
elseif v.seen / seen_total >= 0.9 then
remove[k] = 'omnipresent symbol'
end
known_symbols_list[v.id] = {
seen = v.seen,
name = k,
}
end
-- Walk correlation matrix and check total counts
for sym_id, row in pairs(correlations) do
for inner_sym_id, count in pairs(row) do
local known = known_symbols_list[sym_id]
local inner = known_symbols_list[inner_sym_id]
if known and count == known.seen and not remove[inner.name] and not remove[known.name] then
remove[known.name] = string.format("overlapped by %s",
known_symbols_list[inner_sym_id].name)
end
end
end
return remove
end
local function handle_neural_profile(args)
local known_symbols, correlations = {}, {}
local symbols_count, seen_total = 0, 0
local function process_row(r)
local is_spam = true
if r['Action'] == 'no action' or r['Action'] == 'greylist' then
is_spam = false
end
seen_total = seen_total + 1
local nsym = #r['Symbols.Names']
for i = 1,nsym do
local sym = r['Symbols.Names'][i]
local t = known_symbols[sym]
if not t then
local spam_count, ham_count = 0, 0
if is_spam then
spam_count = spam_count + 1
else
ham_count = ham_count + 1
end
known_symbols[sym] = {
id = symbols_count,
seen = 1,
seen_ham = ham_count,
seen_spam = spam_count,
}
symbols_count = symbols_count + 1
else
known_symbols[sym].seen = known_symbols[sym].seen + 1
if is_spam then
known_symbols[sym].seen_spam = known_symbols[sym].seen_spam + 1
else
known_symbols[sym].seen_ham = known_symbols[sym].seen_ham + 1
end
end
end
-- Fill correlations
for i = 1,nsym do
for j = 1,nsym do
if i ~= j then
local sym = r['Symbols.Names'][i]
local inner_sym_name = r['Symbols.Names'][j]
local known_sym = known_symbols[sym]
local inner_sym = known_symbols[inner_sym_name]
if known_sym and inner_sym then
if not correlations[known_sym.id] then
correlations[known_sym.id] = {}
end
local n = correlations[known_sym.id][inner_sym.id] or 0
n = n + 1
correlations[known_sym.id][inner_sym.id] = n
end
end
end
end
end
local query_days = days_list(args.days)
local conditions = {}
table.insert(conditions, string.format("SettingsId = '%s'", args.settings_id))
local limit = ''
local num_limit = tonumber(args.limit)
if num_limit then
limit = string.format(' LIMIT %d', num_limit) -- Contains leading space
end
if args.where then
table.insert(conditions, args.where)
end
local query_fmt = 'SELECT Action, Symbols.Names FROM rspamd WHERE %s%s'
for _, query_day in ipairs(query_days) do
-- Date should be the last condition
table.insert(conditions, string.format("Date = '%s'", query_day))
local query = string.format(query_fmt, table.concat(conditions, ' AND '), limit)
local upstream = args.upstream:get_upstream_round_robin()
local err = lua_clickhouse.select_sync(upstream, args, http_params, query, process_row)
if err ~= nil then
io.stderr:write(string.format('Error querying Clickhouse: %s\n', err))
os.exit(1)
end
conditions[#conditions] = nil -- remove Date condition
end
local remove = get_excluded_symbols(known_symbols, correlations, seen_total)
if not args.json then
for k in pairs(known_symbols) do
if not remove[k] then
io.stdout:write(string.format('%s\n', k))
end
end
os.exit(0)
end
local json_output = {
all_symbols = {},
removed_symbols = {},
used_symbols = {},
}
for k in pairs(known_symbols) do
table.insert(json_output.all_symbols, k)
local why_removed = remove[k]
if why_removed then
json_output.removed_symbols[k] = why_removed
else
table.insert(json_output.used_symbols, k)
end
end
io.stdout:write(ucl.to_format(json_output, 'json'))
end
local function post_neural_training(url, rule, spam_rows, ham_rows)
-- Prepare JSON payload
local payload = ucl.to_format(
{
ham_vec = ham_rows,
rule = rule,
spam_vec = spam_rows,
}, 'json')
-- POST the payload
local err, response = rspamd_http.request({
body = payload,
config = rspamd_config,
ev_base = rspamadm_ev_base,
log_obj = rspamd_config,
resolver = rspamadm_dns_resolver,
session = rspamadm_session,
url = url,
})
if err then
io.stderr:write(string.format('HTTP error: %s\n', err))
os.exit(1)
end
if response.code ~= 200 then
io.stderr:write(string.format('bad HTTP code: %d\n', response.code))
os.exit(1)
end
io.stdout:write(string.format('%s\n', response.content))
end
local function handle_neural_train(args)
local this_where -- which class of messages are we collecting data for
local ham_rows, spam_rows = {}, {}
local want_spam, want_ham = true, true -- keep collecting while true
local ucl_parser = ucl.parser()
-- Try find profile in config
local neural_opts = rspamd_config:get_all_opt('neural')
local symbols_profile = ((((neural_opts or E).rules or E)[args.rule] or E).profile or E)[args.profile]
if not symbols_profile then
io.stderr:write(string.format("Couldn't find profile %s in rule %s\n", args.profile, args.rule))
os.exit(1)
end
-- Try find max_trains
local max_trains = (neural_opts.rules[args.rule].train or E).max_trains or 1000
-- Callback used to process rows from Clickhouse
local function process_row(r)
local destination -- which table to collect this information in
if this_where == args.ham then
destination = ham_rows
if #destination >= max_trains then
want_ham = false
return
end
else
destination = spam_rows
if #destination >= max_trains then
want_spam = false
return
end
end
local ok, err = ucl_parser:parse_string(r[args.column_name_vector], 'msgpack')
if not ok then
io.stderr:write(string.format("Couldn't parse [%s]: %s", r[args.column_name_vector], err))
os.exit(1)
end
table.insert(destination, ucl_parser:get_object())
end
-- Generate symbols digest
local symbols_digest = lua_util.table_digest(symbols_profile)
-- Create list of days to query data for
local query_days = days_list(args.days)
-- Set value for limit
local limit = ''
local num_limit = tonumber(args.limit)
if num_limit then
limit = string.format(' LIMIT %d', num_limit) -- Contains leading space
end
-- Prepare query elements
local conditions = {string.format("%s = '%s'", args.column_name_digest, symbols_digest)}
local query_fmt = 'SELECT %s FROM rspamd WHERE %s%s'
-- Run queries
for _, the_where in ipairs({args.ham, args.spam}) do
-- Inform callback which group of vectors we're collecting
this_where = the_where
table.insert(conditions, the_where) -- should be 2nd from last condition
-- Loop over days and try collect data
for _, query_day in ipairs(query_days) do
-- Break the loop if we have enough data already
if this_where == args.ham then
if not want_ham then
break
end
else
if not want_spam then
break
end
end
-- Date should be the last condition
table.insert(conditions, string.format("Date = '%s'", query_day))
local query = string.format(query_fmt, args.column_name_vector, table.concat(conditions, ' AND '), limit)
local upstream = args.upstream:get_upstream_round_robin()
local err = lua_clickhouse.select_sync(upstream, args, http_params, query, process_row)
if err ~= nil then
io.stderr:write(string.format('Error querying Clickhouse: %s\n', err))
os.exit(1)
end
conditions[#conditions] = nil -- remove Date condition
end
conditions[#conditions] = nil -- remove spam/ham condition
end
-- Make sure we collected enough data for training
if #ham_rows < max_trains then
io.stderr:write(string.format('Insufficient ham rows: %d/%d\n', #ham_rows, max_trains))
os.exit(1)
end
if #spam_rows < max_trains then
io.stderr:write(string.format('Insufficient spam rows: %d/%d\n', #spam_rows, max_trains))
os.exit(1)
end
return post_neural_training(args.url, args.rule, spam_rows, ham_rows)
end
local command_handlers = {
neural_profile = handle_neural_profile,
neural_train = handle_neural_train,
}
local function handler(args)
local cmd_opts = parser:parse(args)
load_config(cmd_opts.config_file)
local cfg_opts = rspamd_config:get_all_opt('clickhouse')
if cmd_opts.ask_password then
local rspamd_util = require "rspamd_util"
io.write('Password: ')
cmd_opts.password = rspamd_util.readpassphrase()
end
local function override_settings(params)
for _, which in ipairs(params) do
if cmd_opts[which] == nil then
cmd_opts[which] = cfg_opts[which]
end
end
end
override_settings({
'database', 'no_ssl_verify', 'password', 'server',
'use_gzip', 'use_https', 'user',
})
local servers = cmd_opts['server'] or cmd_opts['servers']
if not servers then
parser:error("server(s) unspecified & couldn't be fetched from config")
end
cmd_opts.upstream = rspamd_upstream_list.create(rspamd_config, servers, 8123)
if not cmd_opts.upstream then
io.stderr:write(string.format("can't parse clickhouse address: %s\n", servers))
os.exit(1)
end
local f = command_handlers[cmd_opts.command]
if not f then
parser:error(string.format("command isn't implemented: %s",
cmd_opts.command))
end
f(cmd_opts)
end
return {
handler = handler,
description = parser._description,
name = 'clickhouse'
}
|