aboutsummaryrefslogtreecommitdiffstats
path: root/lualib/rspamadm/rescore.lua
blob: fb1428694828d98d2bf75a7543afcbbd4311afd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
local torch = require "torch"
local nn = require "nn"
local lua_util = require "lua_util"
local ucl = require "ucl"
local logger = require "rspamd_logger"
local getopt = require "rspamadm/getopt"
local optim = require "optim"
local rspamd_util = require "rspamd_util"

local rescore_utility = require "rspamadm/rescore_utility"

local opts
local ignore_symbols = {
  ['DATE_IN_PAST'] =true,
  ['DATE_IN_FUTURE'] = true,
}

local function make_dataset_from_logs(logs, all_symbols, spam_score)
  -- Returns a list of {input, output} for torch SGD train

  local dataset = {}

  for _, log in pairs(logs) do
    local input = torch.Tensor(#all_symbols)
    local output = torch.Tensor(1)
    log = lua_util.rspamd_str_split(log, " ")

    if log[1] == "SPAM" then
      output[1] = 1
    else
      output[1] = 0
    end

    local symbols_set = {}

    for i=4,#log do
      if not ignore_symbols[log[i]] then
        symbols_set[log[i]] = true
      end
    end

    for index, symbol in pairs(all_symbols) do
      if symbols_set[symbol] then
        input[index] = 1
      else
        input[index] = 0
      end
    end

    dataset[#dataset + 1] = {input, output}

  end

  function dataset:size()
    return #dataset
  end

  return dataset
end

local function init_weights(all_symbols, original_symbol_scores)

  local weights = torch.Tensor(#all_symbols)

  for i, symbol in pairs(all_symbols) do
    local score = original_symbol_scores[symbol]
    if not score then score = 0 end
    weights[i] = score
  end

  return weights
end

local function shuffle(logs)

  local size = #logs
  for i = size, 1, -1 do
    local rand = math.random(size)
    logs[i], logs[rand] = logs[rand], logs[i]
  end

end

local function split_logs(logs, split_percent)

  if not split_percent then
    split_percent = 60
  end

  local split_index = math.floor(#logs * split_percent / 100)

  local test_logs = {}
  local train_logs = {}

  for i=1,split_index do
    train_logs[#train_logs + 1] = logs[i]
  end

  for i=split_index + 1, #logs do
    test_logs[#test_logs + 1] = logs[i]
  end

  return train_logs, test_logs
end

local function stitch_new_scores(all_symbols, new_scores)

  local new_symbol_scores = {}

  for idx, symbol in pairs(all_symbols) do
    new_symbol_scores[symbol] = new_scores[idx]
  end

  return new_symbol_scores
end


local function update_logs(logs, symbol_scores)

  for i, log in ipairs(logs) do

    log = lua_util.rspamd_str_split(log, " ")

    local score = 0

    for j=4,#log do
      log[j] = log[j]:gsub("%s+", "")
      score = score + (symbol_scores[log[j]] or 0)
    end

    log[2] = lua_util.round(score, 2)

    logs[i] = table.concat(log, " ")
  end

  return logs
end

local function write_scores(new_symbol_scores, file_path)

  local file = assert(io.open(file_path, "w"))

  local new_scores_ucl = ucl.to_format(new_symbol_scores, "ucl")

  file:write(new_scores_ucl)

  file:close()
end

local function print_score_diff(new_symbol_scores, original_symbol_scores)

  logger.message(string.format("%-35s %-10s %-10s",
      "SYMBOL", "OLD_SCORE", "NEW_SCORE"))

  for symbol, new_score in pairs(new_symbol_scores) do
    logger.message(string.format("%-35s %-10s %-10s",
        symbol,
        original_symbol_scores[symbol] or 0,
        lua_util.round(new_score, 2)))
  end

  logger.message("\nClass changes \n")
  for symbol, new_score in pairs(new_symbol_scores) do
    if original_symbol_scores[symbol] ~= nil then
      if (original_symbol_scores[symbol] > 0 and new_score < 0) or
          (original_symbol_scores[symbol] < 0 and new_score > 0) then
        logger.message(string.format("%-35s %-10s %-10s",
            symbol,
            original_symbol_scores[symbol] or 0,
            lua_util.round(new_score, 2)))
      end
    end
  end

end

local function calculate_fscore_from_weights(logs, all_symbols, weights, threshold)

  local new_symbol_scores = weights:clone()

  new_symbol_scores = stitch_new_scores(all_symbols, new_symbol_scores)

  logs = update_logs(logs, new_symbol_scores)

  local file_stats, _ = rescore_utility.generate_statistics_from_logs(logs, threshold)

  return file_stats.fscore
end

local function print_stats(logs, threshold)

  local file_stats, _ = rescore_utility.generate_statistics_from_logs(logs, threshold)

  local file_stat_format = [[
F-score: %.2f
False positive rate: %.2f %%
False negative rate: %.2f %%
Overall accuracy: %.2f %%
]]

  logger.message("\nStatistics at threshold: " .. threshold)

  logger.message(string.format(file_stat_format,
      file_stats.fscore,
      file_stats.false_positive_rate,
      file_stats.false_negative_rate,
      file_stats.overall_accuracy))

end

-- training function
local function train(dataset, opt, model, criterion, epoch,
                     all_symbols, spam_threshold)
  -- epoch tracker
  epoch = epoch or 1

  -- local vars
  local time = rspamd_util.get_ticks()
  local confusion = optim.ConfusionMatrix({'ham', 'spam'})

  -- do one epoch

  local lbfgsState
  local sgdState

  local batch_size = opt.batch_size

  logger.messagex("trainer epoch #%s, %s batch", epoch, batch_size)

  for t = 1,dataset:size(),batch_size do
    -- create mini batch
    local k = 1
    local last = math.min(t + batch_size - 1, dataset:size())
    local inputs = torch.Tensor(last - t + 1, #all_symbols)
    local targets = torch.Tensor(last - t + 1)
    for i = t,last do
      -- load new sample
      local sample = dataset[i]
      local input = sample[1]:clone()
      local target = sample[2]:clone()
      --target = target:squeeze()
      inputs[k] = input
      targets[k] = target
      k = k + 1
    end

    local parameters,gradParameters = model:getParameters()

    -- create closure to evaluate f(X) and df/dX
    local feval = function(x)
      -- just in case:
      collectgarbage()

      -- get new parameters
      if x ~= parameters then
        parameters:copy(x)
      end

      -- reset gradients
      gradParameters:zero()

      -- evaluate function for complete mini batch
      local outputs = model:forward(inputs)
      local f = criterion:forward(outputs, targets)

      -- estimate df/dW
      local df_do = criterion:backward(outputs, targets)
      model:backward(inputs, df_do)

      -- penalties (L1 and L2):
      local l1 = tonumber(opt.l1) or 0
      local l2 = tonumber(opt.l2) or 0
      if l1 ~= 0 or l2 ~= 0 then
        -- locals:
        local norm,sign= torch.norm,torch.sign

        -- Loss:
        f = f + l1 * norm(parameters,1)
        f = f + l2 * norm(parameters,2)^2/2

        -- Gradients:
        gradParameters:add( sign(parameters):mul(l1) + parameters:clone():mul(l2) )
      end

      -- update confusion
      for i = 1,(last - t + 1) do
        local class_predicted, target_class = 1, 1
        if outputs[i][1] > 0.5 then class_predicted = 2 end
        if targets[i] > 0.5 then target_class = 2 end
        confusion:add(class_predicted, target_class)
      end

      -- return f and df/dX
      return f,gradParameters
    end

    -- optimize on current mini-batch
    if opt.optimization == 'LBFGS' then

      -- Perform LBFGS step:
      lbfgsState = lbfgsState or {
        maxIter = opt.iters,
        lineSearch = optim.lswolfe
      }
      optim.lbfgs(feval, parameters, lbfgsState)

      -- disp report:
      logger.messagex('LBFGS step')
      logger.messagex(' - progress in batch: ' .. t .. '/' .. dataset:size())
      logger.messagex(' - nb of iterations: ' .. lbfgsState.nIter)
      logger.messagex(' - nb of function evalutions: ' .. lbfgsState.funcEval)

    elseif opt.optimization == 'ADAM' then
      sgdState = sgdState or {
        learningRate = tonumber(opts.learning_rate),-- opt.learningRate,
        momentum = tonumber(opts.momentum), -- opt.momentum,
        learningRateDecay = tonumber(opts.learning_rate_decay),
        weightDecay = tonumber(opts.weight_decay),
      }
      optim.adam(feval, parameters, sgdState)
    elseif opt.optimization == 'ADAGRAD' then
      sgdState = sgdState or {
        learningRate = tonumber(opts.learning_rate),-- opt.learningRate,
        momentum = tonumber(opts.momentum), -- opt.momentum,
        learningRateDecay = tonumber(opts.learning_rate_decay),
        weightDecay = tonumber(opts.weight_decay),
      }
      optim.adagrad(feval, parameters, sgdState)
    elseif opt.optimization == 'SGD' then
      sgdState = sgdState or {
        learningRate = tonumber(opts.learning_rate),-- opt.learningRate,
        momentum = tonumber(opts.momentum), -- opt.momentum,
        learningRateDecay = tonumber(opts.learning_rate_decay),
        weightDecay = tonumber(opts.weight_decay),
      }
      optim.sgd(feval, parameters, sgdState)
    elseif opt.optimization == 'NAG' then
      sgdState = sgdState or {
        learningRate = tonumber(opts.learning_rate),-- opt.learningRate,
        momentum = tonumber(opts.momentum), -- opt.momentum,
        learningRateDecay = tonumber(opts.learning_rate_decay),
        weightDecay = tonumber(opts.weight_decay),
      }
      optim.nag(feval, parameters, sgdState)
    else
      error('unknown optimization method')
    end
  end

  -- time taken
  time = rspamd_util.get_ticks() - time
  time = time / dataset:size()
  logger.messagex("time to learn 1 sample = " .. (time*1000) .. 'ms')

  -- logger.messagex confusion matrix
  logger.messagex('confusion: %s', tostring(confusion))
  logger.messagex('%s mean class accuracy (train set)', confusion.totalValid * 100)
  confusion:zero()
end


local default_opts = {
  verbose = true,
  iters = 10,
  threads = 1,
  batch_size = 1000,
  optimization = 'ADAM',
  learning_rate_decay = 0.001,
  momentum = 0.1,
  l1 = 0.0,
  l2 = 0.0,
}

local learning_rates = {
  0.01
}
local penalty_weights = {
  0
}

local function override_defaults(def, override)
  for k,v in pairs(override) do
    if def[k] then
      if type(v) == 'table' then
        override_defaults(def[k], v)
      else
        def[k] = v
      end
    else
      def[k] = v
    end
  end
end

local function get_threshold()
  local actions = rspamd_config:get_all_actions()

  if opts['spam-action'] then
    return (actions[opts['spam-action']] or 0),actions['reject']
  end
  return (actions['add header'] or actions['rewrite subject']
      or actions['reject']), actions['reject']
end

return function (args, cfg)
  opts = default_opts
  override_defaults(opts, getopt.getopt(args, 'i:'))
  local threshold,reject_score = get_threshold()
  local logs = rescore_utility.get_all_logs(cfg["logdir"])

  if opts['ignore-symbol'] then
    local function add_ignore(s)
      ignore_symbols[s] = true
    end
    if type(opts['ignore-symbol']) == 'table' then
      for _,s in ipairs(opts['ignore-symbol']) do
        add_ignore(s)
      end
    else
      add_ignore(opts['ignore-symbol'])
    end
  end

  if opts['learning-rate'] then
    learning_rates = {}

    local function add_rate(r)
      if tonumber(r) then
        table.insert(learning_rates, tonumber(r))
      end
    end
    if type(opts['learning-rate']) == 'table' then
      for _,s in ipairs(opts['learning-rate']) do
        add_rate(s)
      end
    else
      add_rate(opts['learning-rate'])
    end
  end

  if opts['penalty-weight'] then
    penalty_weights = {}

    local function add_weight(r)
      if tonumber(r) then
        table.insert(penalty_weights, tonumber(r))
      end
    end
    if type(opts['penalty-weight']) == 'table' then
      for _,s in ipairs(opts['penalty-weight']) do
        add_weight(s)
      end
    else
      add_weight(opts['penalty-weight'])
    end
  end

  if opts['i'] then opts['iters'] = opts['i'] end

  local all_symbols = rescore_utility.get_all_symbols(logs, ignore_symbols)
  local original_symbol_scores = rescore_utility.get_all_symbol_scores(rspamd_config,
      ignore_symbols)

  shuffle(logs)
  torch.setdefaulttensortype('torch.FloatTensor')

  local train_logs, validation_logs = split_logs(logs, 70)
  local cv_logs, test_logs = split_logs(validation_logs, 50)

  local dataset = make_dataset_from_logs(train_logs, all_symbols, reject_score)


  -- Start of perceptron training
  local input_size = #all_symbols
  torch.setnumthreads(opts['threads'])

  local linear_module = nn.Linear(input_size, 1, false)
  local activation = nn.Sigmoid()

  local perceptron = nn.Sequential()
  perceptron:add(linear_module)
  perceptron:add(activation)

  local criterion = nn.MSECriterion()
  --criterion.sizeAverage = false

  local best_fscore = -math.huge
  local best_weights = linear_module.weight[1]:clone()
  local best_learning_rate
  local best_weight_decay

  for _,lr in ipairs(learning_rates) do
    for _,wd in ipairs(penalty_weights) do
      linear_module.weight[1] = init_weights(all_symbols, original_symbol_scores)
      opts.learning_rate = lr
      opts.weight_decay = wd
      for i=1,tonumber(opts.iters) do
        train(dataset, opts, perceptron, criterion, i, all_symbols, threshold)
      end

      local fscore = calculate_fscore_from_weights(cv_logs,
          all_symbols,
          linear_module.weight[1],
          threshold)

      logger.messagex("Cross-validation fscore=%s, learning rate=%s, weight decay=%s",
          fscore, lr, wd)

      if best_fscore < fscore then
        best_learning_rate = lr
        best_weight_decay = wd
        best_fscore = fscore
        best_weights = linear_module.weight[1]:clone()
      end
    end
  end

  -- End perceptron training

  local new_symbol_scores = best_weights

  new_symbol_scores = stitch_new_scores(all_symbols, new_symbol_scores)

  if cfg["output"] then
    write_scores(new_symbol_scores, cfg["output"])
  end

  if cfg["diff"] then
    print_score_diff(new_symbol_scores, original_symbol_scores)
  end


  -- Pre-rescore test stats
  logger.message("\n\nPre-rescore test stats\n")
  test_logs = update_logs(test_logs, original_symbol_scores)
  print_stats(test_logs, threshold)

  -- Post-rescore test stats
  test_logs = update_logs(test_logs, new_symbol_scores)
  logger.message("\n\nPost-rescore test stats\n")
  print_stats(test_logs, threshold)

  logger.messagex('Best fscore=%s, best learning rate=%s, best weight decay=%s',
      best_fscore, best_learning_rate, best_weight_decay)
end