aboutsummaryrefslogtreecommitdiffstats
path: root/rules/controller/neural.lua
blob: aef104247095123d691b9b9410b28501888c8890 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
--[[
Copyright (c) 2022, Vsevolod Stakhov <vsevolod@rspamd.com>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--

local neural_common = require "plugins/neural"
local ts = require("tableshape").types
local ucl = require "ucl"

local E = {}

-- Controller neural plugin

local learn_request_schema = ts.shape {
  ham_vec = ts.array_of(ts.array_of(ts.number)),
  rule = ts.string:is_optional(),
  spam_vec = ts.array_of(ts.array_of(ts.number)),
}

local function handle_learn(task, conn)
  local parser = ucl.parser()
  local ok, err = parser:parse_text(task:get_rawbody())
  if not ok then
    conn:send_error(400, err)
    return
  end
  local req_params = parser:get_object()

  ok, err = learn_request_schema:transform(req_params)
  if not ok then
    conn:send_error(400, err)
    return
  end

  local rule_name = req_params.rule or 'default'
  local rule = neural_common.settings.rules[rule_name]
  local set = neural_common.get_rule_settings(task, rule)
  local version = ((set.ann or E).version or 0) + 1

  neural_common.spawn_train {
    ev_base = task:get_ev_base(),
    ann_key = neural_common.new_ann_key(rule, set, version),
    set = set,
    rule = rule,
    ham_vec = req_params.ham_vec,
    spam_vec = req_params.spam_vec,
    worker = task:get_worker(),
  }

  conn:send_string('{"success" : true}')
end

return {
  learn = {
    handler = handle_learn,
    enable = true,
    need_task = true,
  },
}