aboutsummaryrefslogtreecommitdiffstats
path: root/src/libcryptobox/catena/catena.c
blob: ced2de8825aacf429dbb3e47e86805b44fba637f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*
 * Copyright 2024 Vsevolod Stakhov
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "config.h"
#include "catena.h"

#include <sodium.h>

#if __BYTE_ORDER == __LITTLE_ENDIAN
#define TO_LITTLE_ENDIAN_64(n) (n)
#define TO_LITTLE_ENDIAN_32(n) (n)
#else
#define TO_LITTLE_ENDIAN_64 GUINT64_SWAP_LE_BE
#define TO_LITTLE_ENDIAN_32 GUINT32_SWAP_LE_BE
#endif

/* Recommended default values */
#define H_LEN CATENA_HLEN
#define KEY_LEN 16

const uint8_t VERSION_ID[] = "Butterfly-Full";
const uint8_t LAMBDA = 4;
const uint8_t GARLIC = 16;
const uint8_t MIN_GARLIC = 16;

/*
 * Hash part
 */

static inline void
__Hash1(const uint8_t *input, const uint32_t inputlen,
		uint8_t hash[H_LEN])
{
	crypto_generichash_blake2b_state ctx;
	crypto_generichash_blake2b_init(&ctx, NULL, 0, H_LEN);
	crypto_generichash_blake2b_update(&ctx, input, inputlen);
	crypto_generichash_blake2b_final(&ctx, hash, H_LEN);
}

/***************************************************/

static inline void __Hash2(const uint8_t *i1, const uint8_t i1len, const uint8_t *i2,
						   const uint8_t i2len, uint8_t hash[H_LEN])
{
	crypto_generichash_blake2b_state ctx;

	crypto_generichash_blake2b_init(&ctx, NULL, 0, H_LEN);
	crypto_generichash_blake2b_update(&ctx, i1, i1len);
	crypto_generichash_blake2b_update(&ctx, i2, i2len);
	crypto_generichash_blake2b_final(&ctx, hash, H_LEN);
}

/***************************************************/

static inline void __Hash3(const uint8_t *i1, const uint8_t i1len, const uint8_t *i2,
						   const uint8_t i2len, const uint8_t *i3, const uint8_t i3len,
						   uint8_t hash[H_LEN])
{
	crypto_generichash_blake2b_state ctx;

	crypto_generichash_blake2b_init(&ctx, NULL, 0, H_LEN);
	crypto_generichash_blake2b_update(&ctx, i1, i1len);
	crypto_generichash_blake2b_update(&ctx, i2, i2len);
	crypto_generichash_blake2b_update(&ctx, i3, i3len);
	crypto_generichash_blake2b_final(&ctx, hash, H_LEN);
}

/***************************************************/

static inline void __Hash4(const uint8_t *i1, const uint8_t i1len, const uint8_t *i2,
						   const uint8_t i2len, const uint8_t *i3, const uint8_t i3len,
						   const uint8_t *i4, const uint8_t i4len, uint8_t hash[H_LEN])
{
	crypto_generichash_blake2b_state ctx;

	crypto_generichash_blake2b_init(&ctx, NULL, 0, H_LEN);
	crypto_generichash_blake2b_update(&ctx, i1, i1len);
	crypto_generichash_blake2b_update(&ctx, i2, i2len);
	crypto_generichash_blake2b_update(&ctx, i3, i3len);
	crypto_generichash_blake2b_update(&ctx, i4, i4len);
	crypto_generichash_blake2b_final(&ctx, hash, H_LEN);
}

/***************************************************/

static inline void __Hash5(const uint8_t *i1, const uint8_t i1len, const uint8_t *i2,
						   const uint8_t i2len, const uint8_t *i3, const uint8_t i3len,
						   const uint8_t *i4, const uint8_t i4len, const uint8_t *i5,
						   const uint8_t i5len, uint8_t hash[H_LEN])
{
	crypto_generichash_blake2b_state ctx;

	crypto_generichash_blake2b_init(&ctx, NULL, 0, H_LEN);
	crypto_generichash_blake2b_update(&ctx, i1, i1len);
	crypto_generichash_blake2b_update(&ctx, i2, i2len);
	crypto_generichash_blake2b_update(&ctx, i3, i3len);
	crypto_generichash_blake2b_update(&ctx, i4, i4len);
	crypto_generichash_blake2b_update(&ctx, i5, i5len);
	crypto_generichash_blake2b_final(&ctx, hash, H_LEN);
}

static inline void
__HashFast(int vindex, const uint8_t *i1, const uint8_t *i2,
		   uint8_t hash[H_LEN])
{
	__Hash2(i1, H_LEN, i2, H_LEN, hash);
}

static void __ResetState(void)
{
}

/*
 * Misc utils
 */
const uint8_t ZERO8[H_LEN] = {0};

/* see: http://en.wikipedia.org/wiki/Xorshift#Variations */
static int p;
static uint64_t s[16];

static void
initXSState(const uint8_t *a, const uint8_t *b)
{
	p = 0;

	for (int i = 0; i < 8; i++) {
		s[i] = UINT64_C(0);
		s[i + 8] = UINT64_C(0);

		for (int j = 0; j < 8; j++) {
			s[i] |= ((uint64_t) a[i * 8 + j]) << j * 8;
			s[i + 8] |= ((uint64_t) b[i * 8 + j]) << j * 8;
		}
	}
}

static uint64_t
xorshift1024star(void)
{
	uint64_t s0 = s[p];
	uint64_t s1 = s[p = (p + 1) & 15];
	s1 ^= s1 << 31;
	s1 ^= s1 >> 11;
	s0 ^= s0 >> 30;
	return (s[p] = s0 ^ s1) * UINT64_C(1181783497276652981);
}

static void
H_INIT(const uint8_t *x, const uint16_t xlen, uint8_t *vm1, uint8_t *vm2)
{
	const uint8_t l = 2;
	uint8_t *tmp = (uint8_t *) g_malloc(l * H_LEN);

	for (uint8_t i = 0; i != l; ++i) {
		__Hash2(&i, 1, x, xlen, tmp + i * H_LEN);
	}

	memcpy(vm1, tmp, H_LEN);
	memcpy(vm2, tmp + (l / 2 * H_LEN), H_LEN);
	g_free(tmp);
}

static void
H_First(const uint8_t *i1, const uint8_t *i2, uint8_t *hash)
{
	uint8_t i = 0;
	uint8_t *x = (uint8_t *) g_malloc(H_LEN);

	__ResetState();
	__Hash2(i1, H_LEN, i2, H_LEN, x);
	__Hash2(&i, 1, x, H_LEN, hash);
	g_free(x);
}

static inline void
initmem(const uint8_t x[H_LEN], const uint64_t c, uint8_t *r)
{
	uint8_t *vm2 = (uint8_t *) g_malloc(H_LEN);
	uint8_t *vm1 = (uint8_t *) g_malloc(H_LEN);

	H_INIT(x, H_LEN, vm1, vm2);
	__ResetState();
	__HashFast(0, vm1, vm2, r);
	__HashFast(1, r, vm1, r + H_LEN);

	/* Top row */
	for (uint64_t i = 2; i < c; i++) {
		__HashFast(i, r + (i - 1) * H_LEN, r + (i - 2) * H_LEN, r + i * H_LEN);
	}

	g_free(vm2);
	g_free(vm1);
}

static inline void
catena_gamma(const uint8_t garlic, const uint8_t *salt,
			 const uint8_t saltlen, uint8_t *r)
{
	const uint64_t q = UINT64_C(1) << ((3 * garlic + 3) / 4);

	uint64_t i, j, j2;
	uint8_t *tmp = g_malloc(H_LEN);
	uint8_t *tmp2 = g_malloc(H_LEN);

	__Hash1(salt, saltlen, tmp);
	__Hash1(tmp, H_LEN, tmp2);
	initXSState(tmp, tmp2);

	__ResetState();
	for (i = 0; i < q; i++) {
		j = xorshift1024star() >> (64 - garlic);
		j2 = xorshift1024star() >> (64 - garlic);
		__HashFast(i, r + j * H_LEN, r + j2 * H_LEN, r + j * H_LEN);
	}

	g_free(tmp);
	g_free(tmp2);
}

static void
XOR(const uint8_t *input1, const uint8_t *input2, uint8_t *output)
{
	uint32_t i;

	for (i = 0; i < H_LEN; i++) {
		output[i] = input1[i] ^ input2[i];
	}
}

/*
 * Butterfly part
 */
/*
 * Sigma function that defines the diagonal connections of a DBG
 * diagonal front: flip the (g-i)th bit (Inverse Butterfly Graph)
 * diagonal back: flip the i-(g-1)th bit (Regular Butterfly Graph)
 */
static uint64_t
sigma(const uint8_t g, const uint64_t i, const uint64_t j)
{
	if (i < g) {
		return (j ^ (UINT64_C(1) << (g - 1 - i))); /* diagonal front */
	}
	else {
		return (j ^ (UINT64_C(1) << (i - (g - 1)))); /* diagonal back */
	}
}

/*calculate actual index from level and element index*/
static uint64_t
idx(uint64_t i, uint64_t j, uint8_t co, uint64_t c, uint64_t m)
{
	i += co;
	if (i % 3 == 0) {
		return j;
	}
	else if (i % 3 == 1) {
		if (j < m) {
			/* still fits in the array */
			return j + c;
		}
		else {
			/* start overwriting elements at the beginning */
			return j - m;
		}
	}
	/* i % 3 == 2 */
	return j + m;
}

/*
 * Computes the hash of x using a Double Butterfly Graph,
 * that forms as (2^g,\lamba)-Superconcentrator
 */
static void
Flap(const uint8_t x[H_LEN], const uint8_t lambda, const uint8_t garlic,
	 const uint8_t *salt, const uint8_t saltlen, uint8_t h[H_LEN])
{
	const uint64_t c = UINT64_C(1) << garlic;
	const uint64_t m = UINT64_C(1) << (garlic - 1); /* 0.5 * 2^g */
	const uint32_t l = 2 * garlic;

	uint8_t *r = g_malloc((c + m) * H_LEN);
	uint8_t *tmp = g_malloc(H_LEN);
	uint64_t i, j;
	uint8_t k;
	uint8_t co = 0; /* carry over from last iteration */

	/* Top row */
	initmem(x, c, r);

	/*Gamma Function*/
	catena_gamma(garlic, salt, saltlen, r);

	/* DBH */
	for (k = 0; k < lambda; k++) {
		for (i = 1; i < l; i++) {
			XOR(r + idx(i - 1, c - 1, co, c, m) * H_LEN,
				r + idx(i - 1, 0, co, c, m) * H_LEN, tmp);

			/*
			 * r0 := H(tmp || vsigma(g,i-1,0) )
			 * __Hash2(tmp, H_LEN, r+idx(i-1,sigma(garlic,i-1,0),co,c,m) * H_LEN, H_LEN,
			 * r+idx(i,0,co,c,m) *H_LEN);
			 */
			H_First(tmp,
					r + idx(i - 1, sigma(garlic, i - 1, 0), co, c, m) * H_LEN,
					r + idx(i, 0, co, c, m) * H_LEN);
			__ResetState();

			/* vertices */
			for (j = 1; j < c; j++) {
				/* tmp:= rj-1 XOR vj */
				XOR(r + idx(i, j - 1, co, c, m) * H_LEN,
					r + idx(i - 1, j, co, c, m) * H_LEN, tmp);
				/* rj := H(tmp || vsigma(g,i-1,j)) */
				__HashFast(j, tmp,
						   r + idx(i - 1, sigma(garlic, i - 1, j), co, c, m) * H_LEN,
						   r + idx(i, j, co, c, m) * H_LEN);
			}
		}
		co = (co + (i - 1)) % 3;
	}

	memcpy(h, r + idx(0, c - 1, co, c, m) * H_LEN, H_LEN);
	g_free(r);
	g_free(tmp);
}

static int
__Catena(const uint8_t *pwd, const uint32_t pwdlen,
		 const uint8_t *salt, const uint8_t saltlen, const uint8_t *data,
		 const uint32_t datalen, const uint8_t lambda, const uint8_t min_garlic,
		 const uint8_t garlic, const uint8_t hashlen, const uint8_t client,
		 const uint8_t tweak_id, uint8_t *hash)
{
	uint8_t x[H_LEN];
	uint8_t hv[H_LEN];
	uint8_t t[4];
	uint8_t c;

	if ((hashlen > H_LEN) || (garlic > 63) || (min_garlic > garlic) || (lambda == 0) || (min_garlic == 0)) {
		return -1;
	}

	/*Compute H(V)*/
	__Hash1(VERSION_ID, strlen((char *) VERSION_ID), hv);

	/* Compute Tweak */
	t[0] = tweak_id;
	t[1] = lambda;
	t[2] = hashlen;
	t[3] = saltlen;

	/* Compute H(AD) */
	__Hash1((uint8_t *) data, datalen, x);

	/* Compute the initial value to hash  */
	__Hash5(hv, H_LEN, t, 4, x, H_LEN, pwd, pwdlen, salt, saltlen, x);

	/*Overwrite Password if enabled*/
#ifdef OVERWRITE
	erasepwd(pwd, pwdlen);
#endif

	Flap(x, lambda, (min_garlic + 1) / 2, salt, saltlen, x);

	for (c = min_garlic; c <= garlic; c++) {
		Flap(x, lambda, c, salt, saltlen, x);
		if ((c == garlic) && (client == CLIENT)) {
			memcpy(hash, x, H_LEN);
			return 0;
		}
		__Hash2(&c, 1, x, H_LEN, x);
		memset(x + hashlen, 0, H_LEN - hashlen);
	}

	memcpy(hash, x, hashlen);

	return 0;
}

/***************************************************/

int catena(const uint8_t *pwd, const uint32_t pwdlen, const uint8_t *salt,
		   const uint8_t saltlen, const uint8_t *data, const uint32_t datalen,
		   const uint8_t lambda, const uint8_t min_garlic, const uint8_t garlic,
		   const uint8_t hashlen, uint8_t *hash)
{
	return __Catena(pwd, pwdlen, salt, saltlen, data, datalen, lambda,
					min_garlic, garlic, hashlen, REGULAR, PASSWORD_HASHING_MODE, hash);
}

int simple_catena(const uint8_t *pwd, const uint32_t pwdlen,
				  const uint8_t *salt, const uint8_t saltlen,
				  const uint8_t *data, const uint32_t datalen,
				  uint8_t hash[H_LEN])
{
	return __Catena(pwd, pwdlen, salt, saltlen, data, datalen,
					LAMBDA, MIN_GARLIC, GARLIC, H_LEN,
					REGULAR, PASSWORD_HASHING_MODE, hash);
}

int catena_test(void)
{
	/* From catena-v3.1 spec */
	uint8_t pw[] = {0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64};
	uint8_t salt[] = {0x73, 0x61, 0x6c, 0x74};
	uint8_t ad[] = {0x64, 0x61, 0x74, 0x61};
	uint8_t expected[] = {
		0x20, 0xc5, 0x91, 0x93, 0x8f, 0xc3, 0xaf, 0xcc, 0x3b, 0xba, 0x91, 0xd2, 0xfb,
		0x84, 0xbf, 0x7b, 0x44, 0x04, 0xf9, 0x4c, 0x45, 0xed, 0x4d, 0x11, 0xa7, 0xe2,
		0xb4, 0x12, 0x3e, 0xab, 0x0b, 0x77, 0x4a, 0x12, 0xb4, 0x22, 0xd0, 0xda, 0xb5,
		0x25, 0x29, 0x02, 0xfc, 0x54, 0x47, 0xea, 0x82, 0x63, 0x8c, 0x1a, 0xfb, 0xa7,
		0xa9, 0x94, 0x24, 0x13, 0x0e, 0x44, 0x36, 0x3b, 0x9d, 0x9f, 0xc9, 0x60};
	uint8_t real[H_LEN];

	if (catena(pw, sizeof(pw), salt, sizeof(salt), ad, sizeof(ad),
			   4, 10, 10, H_LEN, real) != 0) {
		return -1;
	}

	return memcmp(real, expected, H_LEN);
}