1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
/*-
* Copyright 2016 Vsevolod Stakhov
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Bayesian classifier
*/
#include "classifiers.h"
#include "rspamd.h"
#include "filter.h"
#include "cfg_file.h"
#include "stat_internal.h"
#include "math.h"
#define msg_err_bayes(...) rspamd_default_log_function (G_LOG_LEVEL_CRITICAL, \
"bayes", task->task_pool->tag.uid, \
G_STRFUNC, \
__VA_ARGS__)
#define msg_warn_bayes(...) rspamd_default_log_function (G_LOG_LEVEL_WARNING, \
"bayes", task->task_pool->tag.uid, \
G_STRFUNC, \
__VA_ARGS__)
#define msg_info_bayes(...) rspamd_default_log_function (G_LOG_LEVEL_INFO, \
"bayes", task->task_pool->tag.uid, \
G_STRFUNC, \
__VA_ARGS__)
#define msg_debug_bayes(...) rspamd_default_log_function (G_LOG_LEVEL_DEBUG, \
"bayes", task->task_pool->tag.uid, \
G_STRFUNC, \
__VA_ARGS__)
static inline GQuark
bayes_error_quark (void)
{
return g_quark_from_static_string ("bayes-error");
}
/**
* Returns probability of chisquare > value with specified number of freedom
* degrees
* @param value value to test
* @param freedom_deg number of degrees of freedom
* @return
*/
static gdouble
inv_chi_square (struct rspamd_task *task, gdouble value, gint freedom_deg)
{
double prob, sum, m;
gint i;
errno = 0;
m = -value;
prob = exp (value);
if (errno == ERANGE) {
msg_err_bayes ("exp overflow");
return 0;
}
sum = prob;
for (i = 1; i < freedom_deg; i++) {
prob *= m / (gdouble)i;
msg_debug_bayes ("prob: %.6f", prob);
sum += prob;
}
return MIN (1.0, sum);
}
struct bayes_task_closure {
double ham_prob;
double spam_prob;
guint64 processed_tokens;
guint64 total_hits;
struct rspamd_task *task;
};
/*
* Mathematically we use pow(complexity, complexity), where complexity is the
* window index
*/
static const double feature_weight[] = { 0, 1, 4, 27, 256, 3125, 46656, 823543 };
#define PROB_COMBINE(prob, cnt, weight, assumed) (((weight) * (assumed) + (cnt) * (prob)) / ((weight) + (cnt)))
/*
* In this callback we calculate local probabilities for tokens
*/
static void
bayes_classify_token (struct rspamd_classifier *ctx,
rspamd_token_t *tok, struct bayes_task_closure *cl)
{
guint i;
gint id;
guint64 spam_count = 0, ham_count = 0, total_count = 0;
struct rspamd_statfile *st;
struct rspamd_task *task;
double spam_prob, spam_freq, ham_freq, bayes_spam_prob, bayes_ham_prob,
ham_prob, fw, w, norm_sum, norm_sub, val;
task = cl->task;
for (i = 0; i < ctx->statfiles_ids->len; i++) {
id = g_array_index (ctx->statfiles_ids, gint, i);
st = g_ptr_array_index (ctx->ctx->statfiles, id);
g_assert (st != NULL);
val = tok->values[id];
if (val > 0) {
if (st->stcf->is_spam) {
spam_count += val;
}
else {
ham_count += val;
}
total_count += val;
cl->total_hits += val;
}
}
/* Probability for this token */
if (total_count > 0) {
spam_freq = ((double)spam_count / MAX (1., (double) ctx->spam_learns));
ham_freq = ((double)ham_count / MAX (1., (double)ctx->ham_learns));
spam_prob = spam_freq / (spam_freq + ham_freq);
ham_prob = ham_freq / (spam_freq + ham_freq);
fw = feature_weight[tok->window_idx % G_N_ELEMENTS (feature_weight)];
norm_sum = (spam_freq + ham_freq) * (spam_freq + ham_freq);
norm_sub = (spam_freq - ham_freq) * (spam_freq - ham_freq);
w = (norm_sub) / (norm_sum) *
(fw * total_count) / (4.0 * (1.0 + fw * total_count));
bayes_spam_prob = PROB_COMBINE (spam_prob, total_count, w, 0.5);
norm_sub = (ham_freq - spam_freq) * (ham_freq - spam_freq);
w = (norm_sub) / (norm_sum) *
(fw * total_count) / (4.0 * (1.0 + fw * total_count));
bayes_ham_prob = PROB_COMBINE (ham_prob, total_count, w, 0.5);
cl->spam_prob += log (bayes_spam_prob);
cl->ham_prob += log (bayes_ham_prob);
cl->processed_tokens ++;
msg_debug_bayes ("token: weight: %f, total_count: %L, "
"spam_count: %L, ham_count: %L,"
"spam_prob: %.3f, ham_prob: %.3f, "
"bayes_spam_prob: %.3f, bayes_ham_prob: %.3f, "
"current spam prob: %.3f, current ham prob: %.3f",
fw, total_count, spam_count, ham_count,
spam_prob, ham_prob,
bayes_spam_prob, bayes_ham_prob,
cl->spam_prob, cl->ham_prob);
}
}
/*
* A(x - 0.5)^4 + B(x - 0.5)^3 + C(x - 0.5)^2 + D(x - 0.5)
* A = 32,
* B = -6
* C = -7
* D = 3
* y = 32(x - 0.5)^4 - 6(x - 0.5)^3 - 7(x - 0.5)^2 + 3(x - 0.5)
*/
static gdouble
bayes_normalize_prob (gdouble x)
{
const gdouble a = 32, b = -6, c = -7, d = 3;
gdouble xx, x2, x3, x4;
xx = x - 0.5;
x2 = xx * xx;
x3 = x2 * xx;
x4 = x3 * xx;
return a*x4 + b*x3 + c*x2 + d*xx;
}
void
bayes_init (rspamd_mempool_t *pool, struct rspamd_classifier *cl)
{
cl->cfg->flags |= RSPAMD_FLAG_CLASSIFIER_INTEGER;
}
gboolean
bayes_classify (struct rspamd_classifier * ctx,
GPtrArray *tokens,
struct rspamd_task *task)
{
double final_prob, h, s, *pprob;
char *sumbuf;
struct rspamd_statfile *st = NULL;
struct bayes_task_closure cl;
rspamd_token_t *tok;
guint i;
gint id;
GList *cur;
g_assert (ctx != NULL);
g_assert (tokens != NULL);
memset (&cl, 0, sizeof (cl));
cl.task = task;
/* Check min learns */
if (ctx->cfg->min_learns > 0) {
if (ctx->ham_learns < ctx->cfg->min_learns) {
msg_info_task ("skip classification as ham class has not enough "
"learns: %ul, %ud required",
ctx->ham_learns, ctx->cfg->min_learns);
return TRUE;
}
if (ctx->spam_learns < ctx->cfg->min_learns) {
msg_info_task ("skip classification as spam class has not enough "
"learns: %ul, %ud required",
ctx->spam_learns, ctx->cfg->min_learns);
return TRUE;
}
}
for (i = 0; i < tokens->len; i ++) {
tok = g_ptr_array_index (tokens, i);
bayes_classify_token (ctx, tok, &cl);
}
h = 1 - inv_chi_square (task, cl.spam_prob, cl.processed_tokens);
s = 1 - inv_chi_square (task, cl.ham_prob, cl.processed_tokens);
if (isfinite (s) && isfinite (h)) {
final_prob = (s + 1.0 - h) / 2.;
msg_debug_bayes (
"<%s> got ham prob %.2f -> %.2f and spam prob %.2f -> %.2f,"
" %L tokens processed of %ud total tokens",
task->message_id,
cl.ham_prob,
h,
cl.spam_prob,
s,
cl.processed_tokens,
tokens->len);
}
else {
/*
* We have some overflow, hence we need to check which class
* is NaN
*/
if (isfinite (h)) {
final_prob = 1.0;
msg_debug_bayes ("<%s> spam class is overflowed, as we have no"
" ham samples", task->message_id);
}
else if (isfinite (s)) {
final_prob = 0.0;
msg_debug_bayes ("<%s> ham class is overflowed, as we have no"
" spam samples", task->message_id);
}
else {
final_prob = 0.5;
msg_warn_bayes ("<%s> spam and ham classes are both overflowed",
task->message_id);
}
}
pprob = rspamd_mempool_alloc (task->task_pool, sizeof (*pprob));
*pprob = final_prob;
rspamd_mempool_set_variable (task->task_pool, "bayes_prob", pprob, NULL);
if (cl.processed_tokens > 0 && fabs (final_prob - 0.5) > 0.05) {
sumbuf = rspamd_mempool_alloc (task->task_pool, 32);
/* Now we can have exactly one HAM and exactly one SPAM statfiles per classifier */
for (i = 0; i < ctx->statfiles_ids->len; i++) {
id = g_array_index (ctx->statfiles_ids, gint, i);
st = g_ptr_array_index (ctx->ctx->statfiles, id);
if (final_prob > 0.5 && st->stcf->is_spam) {
break;
}
else if (final_prob < 0.5 && !st->stcf->is_spam) {
break;
}
}
/* Correctly scale HAM */
if (final_prob < 0.5) {
final_prob = 1.0 - final_prob;
}
/*
* Bayes p is from 0.5 to 1.0, but confidence is from 0 to 1, so
* we need to rescale it to display correctly
*/
rspamd_snprintf (sumbuf, 32, "%.2f%%", (final_prob - 0.5) * 200.);
final_prob = bayes_normalize_prob (final_prob);
g_assert (st != NULL);
cur = g_list_prepend (NULL, sumbuf);
rspamd_task_insert_result (task,
st->stcf->symbol,
final_prob,
cur);
}
return TRUE;
}
gboolean
bayes_learn_spam (struct rspamd_classifier * ctx,
GPtrArray *tokens,
struct rspamd_task *task,
gboolean is_spam,
gboolean unlearn,
GError **err)
{
guint i, j;
gint id;
struct rspamd_statfile *st;
rspamd_token_t *tok;
gboolean incrementing;
g_assert (ctx != NULL);
g_assert (tokens != NULL);
incrementing = ctx->cfg->flags & RSPAMD_FLAG_CLASSIFIER_INCREMENTING_BACKEND;
for (i = 0; i < tokens->len; i++) {
tok = g_ptr_array_index (tokens, i);
for (j = 0; j < ctx->statfiles_ids->len; j++) {
id = g_array_index (ctx->statfiles_ids, gint, j);
st = g_ptr_array_index (ctx->ctx->statfiles, id);
g_assert (st != NULL);
if (!!st->stcf->is_spam == !!is_spam) {
if (incrementing) {
tok->values[id] = 1;
}
else {
tok->values[id]++;
}
}
else if (tok->values[id] > 0 && unlearn) {
/* Unlearning */
if (incrementing) {
tok->values[id] = -1;
}
else {
tok->values[id]--;
}
}
else if (incrementing) {
tok->values[id] = 0;
}
}
}
return TRUE;
}
|