1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
/*-
* Copyright 2021 Vsevolod Stakhov
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RSPAMD_UTIL_HXX
#define RSPAMD_UTIL_HXX
#pragma once
#include <memory>
#include <array>
#include <string_view>
#include <optional>
#include <tuple>
/*
* Common C++ utilities
*/
namespace rspamd {
/*
* Creates std::array from a standard C style array with automatic size calculation
*/
template <typename... Ts>
constexpr auto array_of(Ts&&... t) -> std::array<typename std::decay_t<typename std::common_type_t<Ts...>>, sizeof...(Ts)>
{
using T = typename std::decay_t<typename std::common_type_t<Ts...>>;
return {{ std::forward<T>(t)... }};
}
template<class C, class K, class V = typename C::mapped_type, typename std::enable_if_t<
std::is_constructible_v<typename C::key_type, K>
&& std::is_constructible_v<typename C::mapped_type, V>, bool> = false>
constexpr auto find_map(const C &c, const K &k) -> std::optional<std::reference_wrapper<const V>>
{
auto f = c.find(k);
if (f != c.end()) {
return std::cref<V>(f->second);
}
return std::nullopt;
}
template <typename _It>
inline constexpr auto make_string_view_from_it(_It begin, _It end)
{
using result_type = std::string_view;
return result_type{((begin != end) ? &*begin : nullptr),
(typename result_type::size_type)std::max(std::distance(begin, end),
(typename result_type::difference_type)0)
};
}
/**
* Enumerate for range loop
*/
template <typename T,
typename TIter = decltype(std::begin(std::declval<T>())),
typename = decltype(std::end(std::declval<T>()))>
constexpr auto enumerate(T && iterable)
{
struct iterator
{
size_t i;
TIter iter;
bool operator != (const iterator & other) const { return iter != other.iter; }
void operator ++ () { ++i; ++iter; }
auto operator * () const { return std::tie(i, *iter); }
};
struct iterable_wrapper
{
T iterable;
auto begin() { return iterator{ 0, std::begin(iterable) }; }
auto end() { return iterator{ 0, std::end(iterable) }; }
};
return iterable_wrapper{ std::forward<T>(iterable) };
}
/**
* Allocator that cleans up memory in a secure way on destruction
* @tparam T
*/
template <class T> class secure_mem_allocator : public std::allocator<T>
{
public:
using value_type = typename std::allocator<T>::value_type;
using size_type = typename std::allocator<T>::size_type;
template<class U> struct rebind { typedef secure_mem_allocator<U> other; };
secure_mem_allocator() noexcept = default;
secure_mem_allocator(const secure_mem_allocator &_) noexcept : std::allocator<T>(_) {}
template <class U> explicit secure_mem_allocator(const secure_mem_allocator<U>&) noexcept {}
void deallocate(value_type *p, size_type num) noexcept {
rspamd_explicit_memzero((void *)p, num);
std::allocator<T>::deallocate(p, num);
}
};
}
#endif //RSPAMD_UTIL_HXX
|