aboutsummaryrefslogtreecommitdiffstats
path: root/src/plugins/lua/gpt.lua
blob: e4a77c6dd873ffa389ef31423fb920ae63794c38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
--[[
Copyright (c) 2024, Vsevolod Stakhov <vsevolod@rspamd.com>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]] --

local N = "gpt"
local E = {}

if confighelp then
  rspamd_config:add_example(nil, 'gpt',
      "Performs postfiltering using GPT model",
      [[
gpt {
  # Supported types: openai, ollama
  type = "openai";
  # Your key to access the API
  api_key = "xxx";
  # Model name
  model = "gpt-4o-mini";
  # Maximum tokens to generate
  max_tokens = 1000;
  # Temperature for sampling
  temperature = 0.0;
  # Timeout for requests
  timeout = 10s;
  # Prompt for the model (use default if not set)
  prompt = "xxx";
  # Custom condition (lua function)
  condition = "xxx";
  # Autolearn if gpt classified
  autolearn = true;
  # Reply conversion (lua code)
  reply_conversion = "xxx";
  # URL for the API
  url = "https://api.openai.com/v1/chat/completions";
  # Check messages with passthrough result
  allow_passthrough = false;
  # Check messages that are apparent ham (no action and negative score)
  allow_ham = false;
  # default send response_format field { type = "json_object" }
  include_response_format = true,
}
  ]])
  return
end

local lua_util = require "lua_util"
local rspamd_http = require "rspamd_http"
local rspamd_logger = require "rspamd_logger"
local lua_mime = require "lua_mime"
local ucl = require "ucl"
local fun = require "fun"

-- Exclude checks if one of those is found
local default_symbols_to_except = {
  BAYES_SPAM = 0.9, -- We already know that it is a spam, so we can safely skip it, but no same logic for HAM!
  WHITELIST_SPF = -1,
  WHITELIST_DKIM = -1,
  WHITELIST_DMARC = -1,
  FUZZY_DENIED = -1,
  REPLY = -1,
  BOUNCE = -1,
}

local settings = {
  type = 'openai',
  api_key = nil,
  model = 'gpt-4o-mini',
  max_tokens = 1000,
  temperature = 0.0,
  timeout = 10,
  prompt = nil,
  condition = nil,
  autolearn = false,
  url = 'https://api.openai.com/v1/chat/completions',
  symbols_to_except = default_symbols_to_except,
  allow_passthrough = false,
  allow_ham = false,
}

local function default_condition(task)
  -- Check result
  -- 1) Skip passthrough
  -- 2) Skip already decided as spam
  -- 3) Skip already decided as ham
  local result = task:get_metric_result()
  if result then
    if result.passthrough and not settings.allow_passthrough then
      return false, 'passthrough'
    end
    local score = result.score
    local action = result.action

    if action == 'reject' and result.npositive > 1 then
      return false, 'already decided as spam'
    end

    if (action == 'no action' and score < 0) and not settings.allow_ham then
      return false, 'negative score, already decided as ham'
    end
  end
  -- We also exclude some symbols
  for s, required_weight in pairs(settings.symbols_to_except) do
    if task:has_symbol(s) then
      if required_weight > 0 then
        -- Also check score
        local sym = task:get_symbol(s) or E
        -- Must exist as we checked it before with `has_symbol`
        if sym.weight then
          if math.abs(sym.weight) >= required_weight then
            return false, 'skip as "' .. s .. '" is found (weight: ' .. sym.weight .. ')'
          end
        end
        lua_util.debugm(N, task, 'symbol %s has weight %s, but required %s', s,
            sym.weight, required_weight)
      else
        return false, 'skip as "' .. s .. '" is found'
      end
    end
  end

  -- Check if we have text at all
  local sel_part = lua_mime.get_displayed_text_part(task)

  if not sel_part then
    return false, 'no text part found'
  end

  -- Check limits and size sanity
  local nwords = sel_part:get_words_count()

  if nwords < 5 then
    return false, 'less than 5 words'
  end

  if nwords > settings.max_tokens then
    -- We need to truncate words (sometimes get_words_count returns a different number comparing to `get_words`)
    local words = sel_part:get_words('norm')
    nwords = #words
    if nwords > settings.max_tokens then
      return true, table.concat(words, ' ', 1, settings.max_tokens)
    end
  end
  return true, sel_part:get_content_oneline()
end

local function maybe_extract_json(str)
  -- Find the first opening brace
  local startPos, endPos = str:find('json%s*{')
  if not startPos then
    startPos, endPos = str:find('{')
  end
  if not startPos then
    return nil
  end

  startPos = endPos - 1
  local openBraces = 0
  endPos = startPos
  local len = #str

  -- Iterate through the string to find matching braces
  for i = startPos, len do
    local char = str:sub(i, i)
    if char == "{" then
      openBraces = openBraces + 1
    elseif char == "}" then
      openBraces = openBraces - 1
      -- When we find the matching closing brace
      if openBraces == 0 then
        endPos = i
        break
      end
    end
  end

  -- If we found a complete JSON-like structure
  if openBraces == 0 then
    return str:sub(startPos, endPos)
  end

  return nil
end

local function default_conversion(task, input)
  local parser = ucl.parser()
  local res, err = parser:parse_string(input)
  if not res then
    rspamd_logger.errx(task, 'cannot parse reply: %s', err)
    return
  end
  local reply = parser:get_object()
  if not reply then
    rspamd_logger.errx(task, 'cannot get object from reply')
    return
  end

  if type(reply.choices) ~= 'table' or type(reply.choices[1]) ~= 'table' then
    rspamd_logger.errx(task, 'no choices in reply')
    return
  end

  local first_message = reply.choices[1].message.content

  if not first_message then
    rspamd_logger.errx(task, 'no content in the first message')
    return
  end

  -- Apply heuristic to extract JSON
  first_message = maybe_extract_json(first_message) or first_message

  parser = ucl.parser()
  res, err = parser:parse_string(first_message)
  if not res then
    rspamd_logger.errx(task, 'cannot parse JSON gpt reply: %s', err)
    return
  end

  reply = parser:get_object()

  if type(reply) == 'table' and reply.probability then
    lua_util.debugm(N, task, 'extracted probability: %s', reply.probability)
    local spam_score = tonumber(reply.probability)

    if not spam_score then
      -- Maybe we need GPT to convert GPT reply here?
      if reply.probability == "high" then
        spam_score = 0.9
      elseif reply.probability == "low" then
        spam_score = 0.1
      else
        rspamd_logger.infox("cannot convert to spam probability: %s", reply.probability)
      end
    end

    if type(reply.usage) == 'table' then
      rspamd_logger.infox(task, 'usage: %s tokens', reply.usage.total_tokens)
    end

    return spam_score
  end

  rspamd_logger.errx(task, 'cannot convert spam score: %s', first_message)
  return
end

local function ollama_conversion(task, input)
  local parser = ucl.parser()
  local res, err = parser:parse_string(input)
  if not res then
    rspamd_logger.errx(task, 'cannot parse reply: %s', err)
    return
  end
  local reply = parser:get_object()
  if not reply then
    rspamd_logger.errx(task, 'cannot get object from reply')
    return
  end

  if type(reply.message) ~= 'table' then
    rspamd_logger.errx(task, 'bad message in reply')
    return
  end

  local first_message = reply.message.content

  if not first_message then
    rspamd_logger.errx(task, 'no content in the first message')
    return
  end

  -- Apply heuristic to extract JSON
  first_message = maybe_extract_json(first_message) or first_message

  parser = ucl.parser()
  res, err = parser:parse_string(first_message)
  if not res then
    rspamd_logger.errx(task, 'cannot parse JSON gpt reply: %s', err)
    return
  end

  reply = parser:get_object()

  if type(reply) == 'table' and reply.probability then
    lua_util.debugm(N, task, 'extracted probability: %s', reply.probability)
    local spam_score = tonumber(reply.probability)

    if not spam_score then
      -- Maybe we need GPT to convert GPT reply here?
      if reply.probability == "high" then
        spam_score = 0.9
      elseif reply.probability == "low" then
        spam_score = 0.1
      else
        rspamd_logger.infox("cannot convert to spam probability: %s", reply.probability)
      end
    end

    if type(reply.usage) == 'table' then
      rspamd_logger.infox(task, 'usage: %s tokens', reply.usage.total_tokens)
    end

    return spam_score
  end

  rspamd_logger.errx(task, 'cannot convert spam score: %s', first_message)
  return
end

local function get_meta_llm_content(task)
  local url_content = "Url domains: no urls found"
  if task:has_urls() then
    local urls = lua_util.extract_specific_urls { task = task, limit = 5, esld_limit = 1 }
    url_content = "Url domains: " .. table.concat(fun.totable(fun.map(function(u)
      return u:get_tld() or ''
    end, urls or {})), ', ')
  end

  local from_or_empty = ((task:get_from('mime') or E)[1] or E)
  local from_content = string.format('From: %s <%s>', from_or_empty.name, from_or_empty.addr)
  lua_util.debugm(N, task, "gpt urls: %s", url_content)
  lua_util.debugm(N, task, "gpt from: %s", from_content)

  return url_content, from_content
end

local function default_llm_check(task)
  local ret, content = settings.condition(task)

  if not ret then
    rspamd_logger.info(task, "skip checking gpt as the condition is not met: %s", content)
    return
  end

  if not content then
    lua_util.debugm(N, task, "no content to send to gpt classification")
    return
  end

  lua_util.debugm(N, task, "sending content to gpt: %s", content)

  local upstream

  local function on_reply(err, code, body)

    if err then
      rspamd_logger.errx(task, 'request failed: %s', err)
      upstream:fail()
      return
    end

    upstream:ok()
    lua_util.debugm(N, task, "got reply: %s", body)
    if code ~= 200 then
      rspamd_logger.errx(task, 'bad reply: %s', body)
      return
    end

    local reply = settings.reply_conversion(task, body)
    if not reply then
      return
    end

    if reply > 0.75 then
      task:insert_result('GPT_SPAM', (reply - 0.75) * 4, tostring(reply))
      if settings.autolearn then
        task:set_flag("learn_spam")
      end
    elseif reply < 0.25 then
      task:insert_result('GPT_HAM', (0.25 - reply) * 4, tostring(reply))
      if settings.autolearn then
        task:set_flag("learn_ham")
      end
    else
      lua_util.debugm(N, task, "uncertain result: %s", reply)
    end

  end

  local from_content, url_content = get_meta_llm_content(task)

  local body = {
    model = settings.model,
    max_tokens = settings.max_tokens,
    temperature = settings.temperature,
    messages = {
      {
        role = 'system',
        content = settings.prompt
      },
      {
        role = 'user',
        content = 'Subject: ' .. task:get_subject() or '',
      },
      {
        role = 'user',
        content = from_content,
      },
      {
        role = 'user',
        content = url_content,
      },
      {
        role = 'user',
        content = content
      }
    }
  }

  -- Conditionally add response_format
  if settings.include_response_format then
    body.response_format = { type = "json_object" }
  end

  upstream = settings.upstreams:get_upstream_round_robin()
  local http_params = {
    url = settings.url,
    mime_type = 'application/json',
    timeout = settings.timeout,
    log_obj = task,
    callback = on_reply,
    headers = {
      ['Authorization'] = 'Bearer ' .. settings.api_key,
    },
    keepalive = true,
    body = ucl.to_format(body, 'json-compact', true),
    task = task,
    upstream = upstream,
    use_gzip = true,
  }

  rspamd_http.request(http_params)
end

local function ollama_check(task)
  local ret, content = settings.condition(task)

  if not ret then
    rspamd_logger.info(task, "skip checking gpt as the condition is not met: %s", content)
    return
  end

  if not content then
    lua_util.debugm(N, task, "no content to send to gpt classification")
    return
  end

  lua_util.debugm(N, task, "sending content to gpt: %s", content)

  local upstream

  local function on_reply(err, code, body)

    if err then
      rspamd_logger.errx(task, 'request failed: %s', err)
      upstream:fail()
      return
    end

    upstream:ok()
    lua_util.debugm(N, task, "got reply: %s", body)
    if code ~= 200 then
      rspamd_logger.errx(task, 'bad reply: %s', body)
      return
    end

    local reply = settings.reply_conversion(task, body)
    if not reply then
      return
    end

    if reply > 0.75 then
      task:insert_result('GPT_SPAM', (reply - 0.75) * 4, tostring(reply))
      if settings.autolearn then
        task:set_flag("learn_spam")
      end
    elseif reply < 0.25 then
      task:insert_result('GPT_HAM', (0.25 - reply) * 4, tostring(reply))
      if settings.autolearn then
        task:set_flag("learn_ham")
      end
    else
      lua_util.debugm(N, task, "uncertain result: %s", reply)
    end

  end

  local from_content, url_content = get_meta_llm_content(task)

  local body = {
    stream = false,
    model = settings.model,
    max_tokens = settings.max_tokens,
    temperature = settings.temperature,
    messages = {
      {
        role = 'system',
        content = settings.prompt
      },
      {
        role = 'user',
        content = 'Subject: ' .. task:get_subject() or '',
      },
      {
        role = 'user',
        content = from_content,
      },
      {
        role = 'user',
        content = url_content,
      },
      {
        role = 'user',
        content = content
      }
    }
  }

  -- Conditionally add response_format
  if settings.include_response_format then
    body.response_format = { type = "json_object" }
  end

  upstream = settings.upstreams:get_upstream_round_robin()
  local http_params = {
    url = settings.url,
    mime_type = 'application/json',
    timeout = settings.timeout,
    log_obj = task,
    callback = on_reply,
    keepalive = true,
    body = ucl.to_format(body, 'json-compact', true),
    task = task,
    upstream = upstream,
    use_gzip = true,
  }

  rspamd_http.request(http_params)
end

local function gpt_check(task)
  return settings.specific_check(task)
end

local types_map = {
  openai = {
    check = default_llm_check,
    condition = default_condition,
    conversion = default_conversion,
    require_passkey = true,
  },
  ollama = {
    check = ollama_check,
    condition = default_condition,
    conversion = ollama_conversion,
    require_passkey = false,
  },
}

local opts = rspamd_config:get_all_opt('gpt')
if opts then
  settings = lua_util.override_defaults(settings, opts)

  if not settings.prompt then
    settings.prompt = "You will be provided with the email message, subject, from and url domains, " ..
        "and your task is to evaluate the probability to be spam as number from 0 to 1, " ..
        "output result as JSON with 'probability' field."
  end

  local llm_type = types_map[settings.type]
  if not llm_type then
    rspamd_logger.warnx(rspamd_config, 'unsupported gpt type: %s', settings.type)
    lua_util.disable_module(N, "config")
    return
  end
  settings.specific_check = llm_type.check

  if settings.condition then
    settings.condition = load(settings.condition)()
  else
    settings.condition = llm_type.condition
  end

  if settings.reply_conversion then
    settings.reply_conversion = load(settings.reply_conversion)()
  else
    settings.reply_conversion = llm_type.conversion
  end

  if not settings.api_key and llm_type.require_passkey then
    rspamd_logger.warnx(rspamd_config, 'no api_key is specified for LLM type %s, disabling module', settings.type)
    lua_util.disable_module(N, "config")

    return
  end

  settings.upstreams = lua_util.http_upstreams_by_url(rspamd_config:get_mempool(), settings.url)

  local id = rspamd_config:register_symbol({
    name = 'GPT_CHECK',
    type = 'postfilter',
    callback = gpt_check,
    priority = lua_util.symbols_priorities.medium,
    augmentations = { string.format("timeout=%f", settings.timeout or 0.0) },
  })

  rspamd_config:register_symbol({
    name = 'GPT_SPAM',
    type = 'virtual',
    parent = id,
    score = 5.0,
  })
  rspamd_config:register_symbol({
    name = 'GPT_HAM',
    type = 'virtual',
    parent = id,
    score = -2.0,
  })
end