aboutsummaryrefslogtreecommitdiffstats
path: root/src/plugins/lua/neural.lua
blob: e3518d3bd78dcbdb72b8b6a25b70cfb6d61f7f39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
--[[
Copyright (c) 2016, Vsevolod Stakhov <vsevolod@highsecure.ru>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--


if confighelp then
  return
end

local rspamd_logger = require "rspamd_logger"
local rspamd_util = require "rspamd_util"
local rspamd_kann = require "rspamd_kann"
local lua_redis = require "lua_redis"
local lua_util = require "lua_util"
local fun = require "fun"
local lua_settings = require "lua_settings"
local meta_functions = require "lua_meta"
local ts = require("tableshape").types
local lua_verdict = require "lua_verdict"
local N = "neural"

-- Module vars
local default_options = {
  train = {
    max_trains = 1000,
    max_epoch = 1000,
    max_usages = 10,
    max_iterations = 25, -- Torch style
    mse = 0.001,
    autotrain = true,
    train_prob = 1.0,
    learn_threads = 1,
    learn_mode = 'balanced', -- Possible values: balanced, proportional
    learning_rate = 0.01,
    classes_bias = 0.0, -- balanced mode: what difference is allowed between classes (1:1 proportion means 0 bias)
    spam_skip_prob = 0.0, -- proportional mode: spam skip probability (0-1)
    ham_skip_prob = 0.0, -- proportional mode: ham skip probability
  },
  watch_interval = 60.0,
  lock_expire = 600,
  learning_spawned = false,
  ann_expire = 60 * 60 * 24 * 2, -- 2 days
  symbol_spam = 'NEURAL_SPAM',
  symbol_ham = 'NEURAL_HAM',
}

local redis_profile_schema = ts.shape{
  digest = ts.string,
  symbols = ts.array_of(ts.string),
  version = ts.number,
  redis_key = ts.string,
  distance = ts.number:is_optional(),
}

-- Rule structure:
-- * static config fields (see `default_options`)
-- * prefix - name or defined prefix
-- * settings - table of settings indexed by settings id, -1 is used when no settings defined

-- Rule settings element defines elements for specific settings id:
-- * symbols - static symbols profile (defined by config or extracted from symcache)
-- * name - name of settings id
-- * digest - digest of all symbols
-- * ann - dynamic ANN configuration loaded from Redis
-- * train - train data for ANN (e.g. the currently trained ANN)

-- Settings ANN table is loaded from Redis and represents dynamic profile for ANN
-- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically
-- * version - version of ANN loaded from redis
-- * redis_key - name of ANN key in Redis
-- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols)
-- * distance - distance between set.symbols and set.ann.symbols
-- * ann - kann object

local settings = {
  rules = {},
  prefix = 'rn', -- Neural network default prefix
  max_profiles = 3, -- Maximum number of NN profiles stored
}

local module_config = rspamd_config:get_all_opt("neural")
if not module_config then
  -- Legacy
  module_config = rspamd_config:get_all_opt("fann_redis")
end


-- Lua script that checks if we can store a new training vector
-- Uses the following keys:
-- key1 - ann key
-- returns nspam,nham (or nil if locked)
local redis_lua_script_vectors_len = [[
  local prefix = KEYS[1]
  local locked = redis.call('HGET', prefix, 'lock')
  if locked then return false end
  local nspam = 0
  local nham = 0

  local ret = redis.call('LLEN', prefix .. '_spam')
  if ret then nspam = tonumber(ret) end
  ret = redis.call('LLEN', prefix .. '_ham')
  if ret then nham = tonumber(ret) end

  return {nspam,nham}
]]
local redis_lua_script_vectors_len_id = nil

-- Lua script to invalidate ANNs by rank
-- Uses the following keys
-- key1 - prefix for keys
-- key2 - number of elements to leave
local redis_lua_script_maybe_invalidate = [[
  local card = redis.call('ZCARD', KEYS[1])
  local lim = tonumber(KEYS[2])
  if card > lim then
    local to_delete = redis.call('ZRANGE', KEYS[1], 0, card - lim - 1)
    for _,k in ipairs(to_delete) do
      local tb = cjson.decode(k)
      redis.call('DEL', tb.redis_key)
      -- Also train vectors
      redis.call('DEL', tb.redis_key .. '_spam')
      redis.call('DEL', tb.redis_key .. '_ham')
    end
    redis.call('ZREMRANGEBYRANK', KEYS[1], 0, card - lim - 1)
    return to_delete
  else
    return {}
  end
]]
local redis_maybe_invalidate_id = nil

-- Lua script to invalidate ANN from redis
-- Uses the following keys
-- key1 - prefix for keys
-- key2 - current time
-- key3 - key expire
-- key4 - hostname
local redis_lua_script_maybe_lock = [[
  local locked = redis.call('HGET', KEYS[1], 'lock')
  local now = tonumber(KEYS[2])
  if locked then
    locked = tonumber(locked)
    local expire = tonumber(KEYS[3])
    if now > locked and (now - locked) < expire then
      return {tostring(locked), redis.call('HGET', KEYS[1], 'hostname')}
    end
  end
  redis.call('HSET', KEYS[1], 'lock', tostring(now))
  redis.call('HSET', KEYS[1], 'hostname', KEYS[4])
  return 1
]]
local redis_maybe_lock_id = nil

-- Lua script to save and unlock ANN in redis
-- Uses the following keys
-- key1 - prefix for ANN
-- key2 - prefix for profile
-- key3 - compressed ANN
-- key4 - profile as JSON
-- key5 - expire in seconds
-- key6 - current time
-- key7 - old key
local redis_lua_script_save_unlock = [[
  local now = tonumber(KEYS[6])
  redis.call('ZADD', KEYS[2], now, KEYS[4])
  redis.call('HSET', KEYS[1], 'ann', KEYS[3])
  redis.call('DEL', KEYS[1] .. '_spam')
  redis.call('DEL', KEYS[1] .. '_ham')
  redis.call('HDEL', KEYS[1], 'lock')
  redis.call('HDEL', KEYS[7], 'lock')
  redis.call('EXPIRE', KEYS[1], tonumber(KEYS[5]))
  return 1
]]
local redis_save_unlock_id = nil

local redis_params

local function load_scripts(params)
  redis_lua_script_vectors_len_id = lua_redis.add_redis_script(redis_lua_script_vectors_len,
    params)
  redis_maybe_invalidate_id = lua_redis.add_redis_script(redis_lua_script_maybe_invalidate,
    params)
  redis_maybe_lock_id = lua_redis.add_redis_script(redis_lua_script_maybe_lock,
    params)
  redis_save_unlock_id = lua_redis.add_redis_script(redis_lua_script_save_unlock,
    params)
end

local function result_to_vector(task, profile)
  if not profile.zeros then
    -- Fill zeros vector
    local zeros = {}
    for i=1,meta_functions.count_metatokens() do
      zeros[i] = 0.0
    end
    for _,_ in ipairs(profile.symbols) do
      zeros[#zeros + 1] = 0.0
    end
    profile.zeros = zeros
  end

  local vec = lua_util.shallowcopy(profile.zeros)
  local mt = meta_functions.rspamd_gen_metatokens(task)

  for i,v in ipairs(mt) do
    vec[i] = v
  end

  task:process_ann_tokens(profile.symbols, vec, #mt, 0.1)

  return vec
end

-- Used to generate new ANN key for specific profile
local function new_ann_key(rule, set, version)
  local ann_key = string.format('%s_%s_%s_%s_%s', settings.prefix,
      rule.prefix, set.name, set.digest:sub(1, 8), tostring(version))

  return ann_key
end

-- Extract settings element for a specific settings id
local function get_rule_settings(task, rule)
  local sid = task:get_settings_id() or -1

  local set = rule.settings[sid]

  if not set then return nil end

  while type(set) == 'number' do
    -- Reference to another settings!
    set = rule.settings[set]
  end

  return set
end

-- Generate redis prefix for specific rule and specific settings
local function redis_ann_prefix(rule, settings_name)
  -- We also need to count metatokens:
  local n = meta_functions.version
  return string.format('%s_%s_%d_%s',
      settings.prefix, rule.prefix, n, settings_name)
end

-- Creates and stores ANN profile in Redis
local function new_ann_profile(task, rule, set, version)
  local ann_key = new_ann_key(rule, set, version)

  local profile = {
    symbols = set.symbols,
    redis_key = ann_key,
    version = version,
    digest = set.digest,
    distance = 0 -- Since we are using our own profile
  }

  local ucl = require "ucl"
  local profile_serialized = ucl.to_format(profile, 'json-compact', true)

  local function add_cb(err, _)
    if err then
      rspamd_logger.errx(task, 'cannot store ANN profile for %s:%s at %s : %s',
          rule.prefix, set.name, profile.redis_key, err)
    else
      rspamd_logger.infox(task, 'created new ANN profile for %s:%s, data stored at prefix %s',
          rule.prefix, set.name, profile.redis_key)
    end
  end

  lua_redis.redis_make_request(task,
      rule.redis,
      nil,
      true, -- is write
      add_cb, --callback
      'ZADD', -- command
      {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
  )

  return profile
end


-- ANN filter function, used to insert scores based on the existing symbols
local function ann_scores_filter(task)

  for _,rule in pairs(settings.rules) do
    local sid = task:get_settings_id() or -1
    local ann
    local profile

    local set = get_rule_settings(task, rule)
    if set then
      if set.ann then
        ann = set.ann.ann
        profile = set.ann
      else
        lua_util.debugm(N, task, 'no ann loaded for %s:%s',
            rule.prefix, set.name)
      end
    else
      lua_util.debugm(N, task, 'no ann defined in %s for settings id %s',
          rule.prefix, sid)
    end

    if ann then
      local vec = result_to_vector(task, profile)

      local score
      local out = ann:apply1(vec)
      score = out[1]

      local symscore = string.format('%.3f', score)
      lua_util.debugm(N, task, '%s:%s:%s ann score: %s',
          rule.prefix, set.name, set.ann.version, symscore)

      if score > 0 then
        local result = score
        task:insert_result(rule.symbol_spam, result, symscore)
      else
        local result = -(score)
        task:insert_result(rule.symbol_ham, result, symscore)
      end
    end
  end
end

local function create_ann(n, nlayers)
    -- We ignore number of layers so far when using kann
  local nhidden = math.floor((n + 1) / 2)
  local t = rspamd_kann.layer.input(n)
  t = rspamd_kann.transform.relu(t)
  t = rspamd_kann.transform.tanh(rspamd_kann.layer.dense(t, nhidden));
  t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.mse)
  return rspamd_kann.new.kann(t)
end

local function can_push_train_vector(rule, task, learn_type, nspam, nham)
  local train_opts = rule.train
  local coin = math.random()

  if train_opts.train_prob and coin < 1.0 - train_opts.train_prob then
    rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin)
    return false
  end

  if train_opts.learn_mode == 'balanced' then
    -- Keep balanced training set based on number of spam and ham samples
    if learn_type == 'spam' then
      if nspam <= train_opts.max_trains then
        if nspam > nham then
          -- Apply sampling
          local skip_rate = 1.0 - nham / (nspam + 1)
          if coin < skip_rate - train_opts.classes_bias then
            rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; probability %s', learn_type,
                skip_rate - train_opts.classes_bias)
            return false
          end
        end
        return true
      else -- Enough learns
        rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many spam samples: %s', learn_type,
            nspam)
      end
    else
      if nham <= train_opts.max_trains then
        if nham > nspam then
          -- Apply sampling
          local skip_rate = 1.0 - nspam / (nham + 1)
          if coin < skip_rate - train_opts.classes_bias then
            rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; probability %s', learn_type,
                skip_rate - train_opts.classes_bias)
            return false
          end
        end
        return true
      else
        rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many ham samples: %s', learn_type,
            nham)
      end
    end
  else
    -- Probabilistic learn mode, we just skip learn if we already have enough samples or
    -- if our coin drop is less than desired probability
    if learn_type == 'spam' then
      if nspam <= train_opts.max_trains then
        if train_opts.spam_skip_prob then
          if coin <= train_opts.spam_skip_prob then
            rspamd_logger.infox(task, 'skip %s sample probabilisticaly; probability %s (%s skip chance)', learn_type,
                coin, train_opts.spam_skip_prob)
            return false
          end

          return true
        end
      else
        rspamd_logger.infox(task, 'skip %s sample; too many spam samples: %s (%s limit)', learn_type,
            nspam, train_opts.max_trains)
      end
    else
      if nham <= train_opts.max_trains then
        if train_opts.ham_skip_prob then
          if coin <= train_opts.ham_skip_prob then
            rspamd_logger.infox(task, 'skip %s sample probabilisticaly; probability %s (%s skip chance)', learn_type,
                coin, train_opts.ham_skip_prob)
            return false
          end

          return true
        end
      else
        rspamd_logger.infox(task, 'skip %s sample; too many ham samples: %s (%s limit)', learn_type,
            nham, train_opts.max_trains)
      end
    end
  end

  return false
end

local function ann_push_task_result(rule, task, verdict, score, set)
  local train_opts = rule.train
  local learn_spam, learn_ham
  local skip_reason = 'unknown'

  if train_opts.autotrain then
    if train_opts.spam_score then
      learn_spam = score >= train_opts.spam_score

      if not learn_spam then
        skip_reason = string.format('score < spam_score: %f < %f',
            score, train_opts.spam_score)
      end
    else
      learn_spam = verdict == 'spam' or verdict == 'junk'

      if not learn_spam then
        skip_reason = string.format('verdict: %s',
            verdict)
      end
    end

    if train_opts.ham_score then
      learn_ham = score <= train_opts.ham_score
      if not learn_ham then
        skip_reason = string.format('score > ham_score: %f > %f',
            score, train_opts.ham_score)
      end
    else
      learn_ham = verdict == 'ham'

      if not learn_ham then
        skip_reason = string.format('verdict: %s',
            verdict)
      end
    end
  else
    -- Train by request header
    local hdr = task:get_request_header('ANN-Train')

    if hdr then
      if hdr:lower() == 'spam' then
        learn_spam = true
      elseif hdr:lower() == 'ham' then
        learn_ham = true
      else
        skip_reason = string.format('no explicit header')
      end
    end
  end


  if learn_spam or learn_ham then
    local learn_type
    if learn_spam then learn_type = 'spam' else learn_type = 'ham' end

    local function vectors_len_cb(err, data)
      if not err and type(data) == 'table' then
        local nspam,nham = data[1],data[2]

        if can_push_train_vector(rule, task, learn_type, nspam, nham) then
          local vec = result_to_vector(task, set)

          local str = rspamd_util.zstd_compress(table.concat(vec, ';'))
          local target_key = set.ann.redis_key .. '_' .. learn_type

          local function learn_vec_cb(_err)
            if _err then
              rspamd_logger.errx(task, 'cannot store train vector for %s:%s: %s',
                  rule.prefix, set.name, _err)
            else
              lua_util.debugm(N, task,
                  "add train data for ANN rule " ..
                      "%s:%s, save %s vector of %s elts in %s key; %s bytes compressed",
                  rule.prefix, set.name, learn_type, #vec, target_key, #str)
            end
          end

          lua_redis.redis_make_request(task,
              rule.redis,
              nil,
              true, -- is write
              learn_vec_cb, --callback
              'LPUSH', -- command
              { target_key, str } -- arguments
          )
        else
          lua_util.debugm(N, task,
              "do not add %s train data for ANN rule " ..
                  "%s:%s",
              learn_type, rule.prefix, set.name)
        end
      else
        if err then
          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : %s',
              rule.prefix, set.name, err)
        elseif type(data) == 'userdata' then
          -- nil return value
          rspamd_logger.infox(task, "cannot learn %s ANN %s:%s; redis_key: %s: locked for learning",
              learn_type, rule.prefix, set.name, set.ann.redis_key)
        else
          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : type of Redis key %s is %s, expected table' ..
              'please remove this key from Redis manually if you perform upgrade from the previous version',
              rule.prefix, set.name, set.ann.redis_key, type(data))
        end
      end
    end

    -- Check if we can learn
    if set.can_store_vectors then
      if not set.ann then
        -- Need to create or load a profile corresponding to the current configuration
        set.ann = new_ann_profile(task, rule, set, 0)
        lua_util.debugm(N, task,
            'requested new profile for %s, set.ann is missing',
            set.name)
      end

      lua_redis.exec_redis_script(redis_lua_script_vectors_len_id,
          {task = task, is_write = false},
          vectors_len_cb,
          {
            set.ann.redis_key,
          })
    else
      lua_util.debugm(N, task,
          'do not push data: train condition not satisfied; reason: not checked existing ANNs')
    end
  else
    lua_util.debugm(N, task,
        'do not push data to key %s: train condition not satisfied; reason: %s',
        (set.ann or {}).redis_key,
        skip_reason)
  end
end

--- Offline training logic

-- Closure generator for unlock function
local function gen_unlock_cb(rule, set, ann_key)
  return function (err)
    if err then
      rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s',
          rule.prefix, set.name, ann_key, err)
    else
      lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s',
          rule.prefix, set.name, ann_key)
    end
  end
end

-- This function is intended to extend lock for ANN during training
-- It registers periodic that increases locked key each 30 seconds unless
-- `set.learning_spawned` is set to `true`
local function register_lock_extender(rule, set, ev_base, ann_key)
  rspamd_config:add_periodic(ev_base, 30.0,
      function()
        local function redis_lock_extend_cb(_err, _)
          if _err then
            rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s',
                ann_key, _err)
          else
            rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds',
                ann_key)
          end
        end

        if set.learning_spawned then
          lua_redis.redis_make_request_taskless(ev_base,
              rspamd_config,
              rule.redis,
              nil,
              true, -- is write
              redis_lock_extend_cb, --callback
              'HINCRBY', -- command
              {ann_key, 'lock', '30'}
          )
        else
          lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false")
          return false -- do not plan any more updates
        end

        return true
      end
  )
end

-- This function receives training vectors, checks them, spawn learning and saves ANN in Redis
local function spawn_train(worker, ev_base, rule, set, ann_key, ham_vec, spam_vec)
  -- Check training data sanity
  -- Now we need to join inputs and create the appropriate test vectors
  local n = #set.symbols +
      meta_functions.rspamd_count_metatokens()

  -- Now we can train ann
  local train_ann = create_ann(n, 3)

  if #ham_vec + #spam_vec < rule.train.max_trains / 2 then
    -- Invalidate ANN as it is definitely invalid
    -- TODO: add invalidation
    assert(false)
  else
    local inputs, outputs = {}, {}

    -- Used to show sparsed vectors in a convenient format (for debugging only)
    local function debug_vec(t)
      local ret = {}
      for i,v in ipairs(t) do
        if v ~= 0 then
          ret[#ret + 1] = string.format('%d=%.2f', i, v)
        end
      end

      return ret
    end

    -- Make training set by joining vectors
    -- KANN automatically shuffles those samples
    -- 1.0 is used for spam and -1.0 is used for ham
    -- It implies that output layer can express that (e.g. tanh output)
    for _,e in ipairs(spam_vec) do
      inputs[#inputs + 1] = e
      outputs[#outputs + 1] = {1.0}
      --rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e))
    end
    for _,e in ipairs(ham_vec) do
      inputs[#inputs + 1] = e
      outputs[#outputs + 1] = {-1.0}
      --rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e))
    end

    -- Called in child process
    local function train()
      local log_thresh = rule.train.max_iterations / 10
      local seen_nan = false

      local function train_cb(iter, train_cost, value_cost)
        if (iter * (rule.train.max_iterations / log_thresh)) % (rule.train.max_iterations) == 0 then
          if train_cost ~= train_cost and not seen_nan then
            -- We have nan :( try to log lot's of stuff to dig into a problem
            seen_nan = true
            rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s',
                rule.prefix, set.name,
                value_cost)
            for i,e in ipairs(inputs) do
              lua_util.debugm(N, rspamd_config, 'train vector %s -> %s',
                  debug_vec(e), outputs[i][1])
            end
          end

          rspamd_logger.infox(rspamd_config,
              "ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s",
              rule.prefix, set.name,
              ann_key,
              iter,
              train_cost,
              value_cost)
        end
      end

      train_ann:train1(inputs, outputs, {
        lr = rule.train.learning_rate,
        max_epoch = rule.train.max_iterations,
        cb = train_cb,
      })

      if not seen_nan then
        local out = train_ann:save()
        return out
      else
        return nil
      end
    end

    set.learning_spawned = true

    local function redis_save_cb(err)
      if err then
        rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s',
            rule.prefix, set.name, ann_key, err)
        lua_redis.redis_make_request_taskless(ev_base,
            rspamd_config,
            rule.redis,
            nil,
            false, -- is write
            gen_unlock_cb(rule, set, ann_key), --callback
            'HDEL', -- command
            {ann_key, 'lock'}
        )
      else
        rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s',
            rule.prefix, set.name, set.ann.redis_key)
      end
    end

    local function ann_trained(err, data)
      set.learning_spawned = false
      if err then
        rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s',
            rule.prefix, set.name, err)
        lua_redis.redis_make_request_taskless(ev_base,
            rspamd_config,
            rule.redis,
            nil,
            true, -- is write
            gen_unlock_cb(rule, set, ann_key), --callback
            'HDEL', -- command
            {ann_key, 'lock'}
        )
      else
        local ann_data = rspamd_util.zstd_compress(data)
        if not set.ann then
          set.ann = {
            symbols = set.symbols,
            distance = 0,
            digest = set.digest,
            redis_key = ann_key,
          }
        end
        -- Deserialise ANN from the child process
        ann_trained = rspamd_kann.load(data)
        local version = (set.ann.version or 0) + 1
        set.ann.version = version
        set.ann.ann = ann_trained
        set.ann.symbols = set.symbols
        set.ann.redis_key = new_ann_key(rule, set, version)

        local profile = {
          symbols = set.symbols,
          digest = set.digest,
          redis_key = set.ann.redis_key,
          version = version
        }

        local ucl = require "ucl"
        local profile_serialized = ucl.to_format(profile, 'json-compact', true)

        rspamd_logger.infox(rspamd_config,
            'trained ANN %s:%s, %s bytes; redis key: %s (old key %s)',
            rule.prefix, set.name, #data, set.ann.redis_key, ann_key)

        lua_redis.exec_redis_script(redis_save_unlock_id,
            {ev_base = ev_base, is_write = true},
            redis_save_cb,
            {profile.redis_key,
             redis_ann_prefix(rule, set.name),
             ann_data,
             profile_serialized,
             tostring(rule.ann_expire),
             tostring(os.time()),
             ann_key, -- old key to unlock...
            })
      end
    end

    worker:spawn_process{
      func = train,
      on_complete = ann_trained,
      proctitle = string.format("ANN train for %s/%s", rule.prefix, set.name),
    }
  end
  -- Spawn learn and register lock extension
  set.learning_spawned = true
  register_lock_extender(rule, set, ev_base, ann_key)
end

-- Utility to extract and split saved training vectors to a table of tables
local function process_training_vectors(data)
  return fun.totable(fun.map(function(tok)
    local _,str = rspamd_util.zstd_decompress(tok)
    return fun.totable(fun.map(tonumber, lua_util.str_split(tostring(str), ';')))
  end, data))
end

-- This function does the following:
-- * Tries to lock ANN
-- * Loads spam and ham vectors
-- * Spawn learning process
local function do_train_ann(worker, ev_base, rule, set, ann_key)
  local spam_elts = {}
  local ham_elts = {}

  local function redis_ham_cb(err, data)
    if err or type(data) ~= 'table' then
      rspamd_logger.errx(rspamd_config, 'cannot get ham tokens for ANN %s from redis: %s',
        ann_key, err)
      -- Unlock on error
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        true, -- is write
          gen_unlock_cb(rule, set, ann_key), --callback
        'HDEL', -- command
        {ann_key, 'lock'}
      )
    else
      -- Decompress and convert to numbers each training vector
      ham_elts = process_training_vectors(data)
      spawn_train(worker, ev_base, rule, set, ann_key, ham_elts, spam_elts)
    end
  end

  -- Spam vectors received
  local function redis_spam_cb(err, data)
    if err or type(data) ~= 'table' then
      rspamd_logger.errx(rspamd_config, 'cannot get spam tokens for ANN %s from redis: %s',
        ann_key, err)
      -- Unlock ANN on error
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        true, -- is write
          gen_unlock_cb(rule, set, ann_key), --callback
        'HDEL', -- command
        {ann_key, 'lock'}
      )
    else
      -- Decompress and convert to numbers each training vector
      spam_elts = process_training_vectors(data)
      -- Now get ham vectors...
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        false, -- is write
        redis_ham_cb, --callback
        'LRANGE', -- command
        {ann_key .. '_ham', '0', '-1'}
      )
    end
  end

  local function redis_lock_cb(err, data)
    if err then
      rspamd_logger.errx(rspamd_config, 'cannot call lock script for ANN %s from redis: %s',
        ann_key, err)
    elseif type(data) == 'number' and data == 1 then
      -- ANN is locked, so we can extract SPAM and HAM vectors and spawn learning
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        false, -- is write
        redis_spam_cb, --callback
        'LRANGE', -- command
        {ann_key .. '_spam', '0', '-1'}
      )

      rspamd_logger.infox(rspamd_config, 'lock ANN %s:%s (key name %s) for learning',
        rule.prefix, set.name, ann_key)
    else
      local lock_tm = tonumber(data[1])
      rspamd_logger.infox(rspamd_config, 'do not learn ANN %s:%s (key name %s), ' ..
          'locked by another host %s at %s', rule.prefix, set.name, ann_key,
          data[2], os.date('%c', lock_tm))
    end
  end

  -- Check if we are already learning this network
  if set.learning_spawned then
    rspamd_logger.infox(rspamd_config, 'do not learn ANN %s, already learning another ANN',
        ann_key)
    return
  end

  -- Call Redis script that tries to acquire a lock
  -- This script returns either a boolean or a pair {'lock_time', 'hostname'} when
  -- ANN is locked by another host (or a process, meh)
  lua_redis.exec_redis_script(redis_maybe_lock_id,
    {ev_base = ev_base, is_write = true},
    redis_lock_cb,
      {
        ann_key,
        tostring(os.time()),
        tostring(rule.watch_interval * 2),
        rspamd_util.get_hostname()
    })
end

-- This function loads new ann from Redis
-- This is based on `profile` attribute.
-- ANN is loaded from `profile.redis_key`
-- Rank of `profile` key is also increased, unfortunately, it means that we need to
-- serialize profile one more time and set its rank to the current time
-- set.ann fields are set according to Redis data received
local function load_new_ann(rule, ev_base, set, profile, min_diff)
  local ann_key = profile.redis_key

  local function data_cb(err, data)
    if err then
      rspamd_logger.errx(rspamd_config, 'cannot get ANN data from key: %s; %s',
          ann_key, err)
    else
      if type(data) == 'string' then
        local _err,ann_data = rspamd_util.zstd_decompress(data)
        local ann

        if _err or not ann_data then
          rspamd_logger.errx(rspamd_config, 'cannot decompress ANN for %s from Redis key %s: %s',
              rule.prefix .. ':' .. set.name, ann_key, _err)
          return
        else
          ann = rspamd_kann.load(ann_data)

          if ann then
            set.ann = {
              digest = profile.digest,
              version = profile.version,
              symbols = profile.symbols,
              distance = min_diff,
              redis_key = profile.redis_key
            }

            local ucl = require "ucl"
            local profile_serialized = ucl.to_format(profile, 'json-compact', true)
            set.ann.ann = ann -- To avoid serialization

            local function rank_cb(_, _)
              -- TODO: maybe add some logging
            end
            -- Also update rank for the loaded ANN to avoid removal
            lua_redis.redis_make_request_taskless(ev_base,
                rspamd_config,
                rule.redis,
                nil,
                true, -- is write
                rank_cb, --callback
                'ZADD', -- command
                {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
            )
            rspamd_logger.infox(rspamd_config, 'loaded ANN for %s:%s from %s; %s bytes compressed; version=%s',
                rule.prefix, set.name, ann_key, #ann_data, profile.version)
          else
            rspamd_logger.errx(rspamd_config, 'cannot deserialize ANN for %s:%s from Redis key %s',
                rule.prefix, set.name, ann_key)
          end
        end
      else
        lua_util.debugm(N, rspamd_config, 'no ANN for %s:%s in Redis key %s',
            rule.prefix, set.name, ann_key)
      end
    end
  end
  lua_redis.redis_make_request_taskless(ev_base,
      rspamd_config,
      rule.redis,
      nil,
      false, -- is write
      data_cb, --callback
      'HGET', -- command
      {ann_key, 'ann'} -- arguments
  )
end

-- Used to check an element in Redis serialized as JSON
-- for some specific rule + some specific setting
-- This function tries to load more fresh or more specific ANNs in lieu of
-- the existing ones.
-- Use this function to load ANNs as `callback` parameter for `check_anns` function
local function process_existing_ann(_, ev_base, rule, set, profiles)
  local my_symbols = set.symbols
  local min_diff = math.huge
  local sel_elt

  for _,elt in fun.iter(profiles) do
    if elt and elt.symbols then
      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
      -- Check distance
      if dist < #my_symbols * .3 then
        if dist < min_diff then
          min_diff = dist
          sel_elt = elt
        end
      end
    end
  end

  if sel_elt then
    -- We can load element from ANN
    if set.ann then
      -- We have an existing ANN, probably the same...
      if set.ann.digest == sel_elt.digest then
        -- Same ANN, check version
        if set.ann.version < sel_elt.version then
          -- Load new ann
          rspamd_logger.infox(rspamd_config, 'ann %s is changed, ' ..
              'our version = %s, remote version = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.version,
              sel_elt.version)
          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
        else
          lua_util.debugm(N, rspamd_config, 'ann %s is not changed, ' ..
              'our version = %s, remote version = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.version,
              sel_elt.version)
        end
      else
        -- We have some different ANN, so we need to compare distance
        if set.ann.distance > min_diff then
          -- Load more specific ANN
          rspamd_logger.infox(rspamd_config, 'more specific ann is available for %s, ' ..
              'our distance = %s, remote distance = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.distance,
              min_diff)
          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
        else
          lua_util.debugm(N, rspamd_config, 'ann %s is not changed or less specific, ' ..
              'our distance = %s, remote distance = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.distance,
              min_diff)
        end
      end
    else
      -- We have no ANN, load new one
      load_new_ann(rule, ev_base, set, sel_elt, min_diff)
    end
  end
end


-- This function checks all profiles and selects if we can train our
-- ANN. By our we mean that it has exactly the same symbols in profile.
-- Use this function to train ANN as `callback` parameter for `check_anns` function
local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
  local my_symbols = set.symbols
  local sel_elt
  local lens = {
    spam = 0,
    ham = 0,
  }

  for _,elt in fun.iter(profiles) do
    if elt and elt.symbols then
      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
      -- Check distance
      if dist == 0 then
        sel_elt = elt
        break
      end
    end
  end

  if sel_elt then
    -- We have our ANN and that's train vectors, check if we can learn
    local ann_key = sel_elt.redis_key

    lua_util.debugm(N, rspamd_config, "check if ANN %s needs to be trained",
        ann_key)

    -- Create continuation closure
    local redis_len_cb_gen = function(cont_cb, what, is_final)
      return function(err, data)
        if err then
          rspamd_logger.errx(rspamd_config,
              'cannot get ANN %s trains %s from redis: %s', what, ann_key, err)
        elseif data and type(data) == 'number' or type(data) == 'string' then
          local ntrains = tonumber(data) or 0
          lens[what] = ntrains
          if is_final then
            -- Ensure that we have the following:
            -- one class has reached max_trains
            -- other class(es) are at least as full as classes_bias
            -- e.g. if classes_bias = 0.25 and we have 10 max_trains then
            -- one class must have 10 or more trains whilst another should have
            -- at least (10 * (1 - 0.25)) = 8 trains

            local max_len = math.max(lua_util.unpack(lua_util.values(lens)))
            local min_len = math.min(lua_util.unpack(lua_util.values(lens)))

            if rule.train.learn_type == 'balanced' then
              local len_bias_check_pred = function(_, l)
                return l >= rule.train.max_trains * (1.0 - rule.train.classes_bias)
              end
              if max_len >= rule.train.max_trains and fun.all(len_bias_check_pred, lens) then
                rspamd_logger.debugm(N, rspamd_config,
                    'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
                    ann_key, lens, rule.train.max_trains, what)
                cont_cb()
              else
                rspamd_logger.debugm(N, rspamd_config,
                    'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
                    ann_key, what, lens, rule.train.max_trains)
              end
            else
              -- Probabilistic mode, just ensure that at least one vector is okay
              if min_len > 0 and max_len >= rule.train.max_trains then
                rspamd_logger.debugm(N, rspamd_config,
                    'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
                    ann_key, lens, rule.train.max_trains, what)
                cont_cb()
              else
                rspamd_logger.debugm(N, rspamd_config,
                    'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
                    ann_key, what, lens, rule.train.max_trains)
              end
            end

          else
            rspamd_logger.debugm(N, rspamd_config,
                'checked %s vectors in ANN %s: %s vectors; %s required, need to check other class vectors',
                what, ann_key, ntrains, rule.train.max_trains)
            cont_cb()
          end
        end
      end

    end

    local function initiate_train()
      rspamd_logger.infox(rspamd_config,
          'need to learn ANN %s after %s required learn vectors',
          ann_key, lens)
      do_train_ann(worker, ev_base, rule, set, ann_key)
    end

    -- Spam vector is OK, check ham vector length
    local function check_ham_len()
      lua_redis.redis_make_request_taskless(ev_base,
          rspamd_config,
          rule.redis,
          nil,
          false, -- is write
          redis_len_cb_gen(initiate_train, 'ham', true), --callback
          'LLEN', -- command
          {ann_key .. '_ham'}
      )
    end

    lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        false, -- is write
        redis_len_cb_gen(check_ham_len, 'spam', false), --callback
        'LLEN', -- command
        {ann_key .. '_spam'}
    )
  end
end

-- Used to deserialise ANN element from a list
local function load_ann_profile(element)
  local ucl = require "ucl"

  local parser = ucl.parser()
  local res,ucl_err = parser:parse_string(element)
  if not res then
    rspamd_logger.warnx(rspamd_config, 'cannot parse ANN from redis: %s',
        ucl_err)
    return nil
  else
    local profile = parser:get_object()
    local checked,schema_err = redis_profile_schema:transform(profile)
    if not checked then
      rspamd_logger.errx(rspamd_config, "cannot parse profile schema: %s", schema_err)

      return nil
    end
    return checked
  end
end

-- Function to check or load ANNs from Redis
local function check_anns(worker, cfg, ev_base, rule, process_callback, what)
  for _,set in pairs(rule.settings) do
    local function members_cb(err, data)
      if err then
        rspamd_logger.errx(cfg, 'cannot get ANNs list from redis: %s',
            err)
        set.can_store_vectors = true
      elseif type(data) == 'table' then
        lua_util.debugm(N, cfg, '%s: process element %s:%s',
            what, rule.prefix, set.name)
        process_callback(worker, ev_base, rule, set, fun.map(load_ann_profile, data))
        set.can_store_vectors = true
      end
    end

    if type(set) == 'table' then
      -- Extract all profiles for some specific settings id
      -- Get the last `max_profiles` recently used
      -- Select the most appropriate to our profile but it should not differ by more
      -- than 30% of symbols
      lua_redis.redis_make_request_taskless(ev_base,
          cfg,
          rule.redis,
          nil,
          false, -- is write
          members_cb, --callback
          'ZREVRANGE', -- command
          {set.prefix, '0', tostring(settings.max_profiles)} -- arguments
      )
    end
  end -- Cycle over all settings

  return rule.watch_interval
end

-- Function to clean up old ANNs
local function cleanup_anns(rule, cfg, ev_base)
  for _,set in pairs(rule.settings) do
    local function invalidate_cb(err, data)
      if err then
        rspamd_logger.errx(cfg, 'cannot exec invalidate script in redis: %s',
            err)
      elseif type(data) == 'table' then
        for _,expired in ipairs(data) do
          local profile = load_ann_profile(expired)
          rspamd_logger.infox(cfg, 'invalidated ANN for %s; redis key: %s; version=%s',
              rule.prefix .. ':' .. set.name,
              profile.redis_key,
              profile.version)
        end
      end
    end

    if type(set) == 'table' then
      lua_redis.exec_redis_script(redis_maybe_invalidate_id,
          {ev_base = ev_base, is_write = true},
          invalidate_cb,
          {set.prefix, tostring(settings.max_profiles)})
    end
  end
end

local function ann_push_vector(task)
  if task:has_flag('skip') then
    lua_util.debugm(N, task, 'do not push data for skipped task')
    return
  end
  if not settings.allow_local and lua_util.is_rspamc_or_controller(task) then
    lua_util.debugm(N, task, 'do not push data for manual scan')
    return
  end

  local verdict,score = lua_verdict.get_specific_verdict(N, task)

  if verdict == 'passthrough' then
    lua_util.debugm(N, task, 'ignore task as its verdict is %s(%s)',
        verdict, score)

    return
  end

  if score ~= score then
    lua_util.debugm(N, task, 'ignore task as its score is nan (%s verdict)',
        verdict)

    return
  end

  for _,rule in pairs(settings.rules) do
    local set = get_rule_settings(task, rule)

    if set then
      ann_push_task_result(rule, task, verdict, score, set)
    else
      lua_util.debugm(N, task, 'settings not found in rule %s', rule.prefix)
    end

  end
end


-- This function is used to adjust profiles and allowed setting ids for each rule
-- It must be called when all settings are already registered (e.g. at post-init for config)
local function process_rules_settings()
  local function process_settings_elt(rule, selt)
    local profile = rule.profile[selt.name]
    if profile then
      -- Use static user defined profile
      -- Ensure that we have an array...
      lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s",
          rule.prefix, selt.name, profile)
      if not profile[1] then profile = lua_util.keys(profile) end
      selt.symbols = profile
    else
      lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)",
          rule.prefix, selt.name)
    end

    local function filter_symbols_predicate(sname)
      local fl = rspamd_config:get_symbol_flags(sname)
      if fl then
        fl = lua_util.list_to_hash(fl)

        return not (fl.nostat or fl.idempotent or fl.skip)
      end

      return false
    end

    -- Generic stuff
    table.sort(fun.totable(fun.filter(filter_symbols_predicate, selt.symbols)))

    selt.digest = lua_util.table_digest(selt.symbols)
    selt.prefix = redis_ann_prefix(rule, selt.name)

    lua_redis.register_prefix(selt.prefix, N,
        string.format('NN prefix for rule "%s"; settings id "%s"',
            rule.prefix, selt.name), {
          persistent = true,
          type = 'zlist',
        })
    -- Versions
    lua_redis.register_prefix(selt.prefix .. '_\\d+', N,
        string.format('NN storage for rule "%s"; settings id "%s"',
            rule.prefix, selt.name), {
          persistent = true,
          type = 'hash',
        })
    lua_redis.register_prefix(selt.prefix .. '_\\d+_spam', N,
        string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
            rule.prefix, selt.name), {
          persistent = true,
          type = 'list',
        })
    lua_redis.register_prefix(selt.prefix .. '_\\d+_ham', N,
        string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
            rule.prefix, selt.name), {
          persistent = true,
          type = 'list',
        })
  end

  for k,rule in pairs(settings.rules) do
    if not rule.allowed_settings then
      rule.allowed_settings = {}
    elseif rule.allowed_settings == 'all' then
      -- Extract all settings ids
      rule.allowed_settings = lua_util.keys(lua_settings.all_settings())
    end

    -- Convert to a map <setting_id> -> true
    rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings)

    -- Check if we can work without settings
    if k == 'default' or type(rule.default) ~= 'boolean' then
      rule.default = true
    end

    rule.settings = {}

    if rule.default then
      local default_settings = {
        symbols = lua_settings.default_symbols(),
        name = 'default'
      }

      process_settings_elt(rule, default_settings)
      rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32
    end

    -- Now, for each allowed settings, we store sorted symbols + digest
    -- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest }
    for s,_ in pairs(rule.allowed_settings) do
      -- Here, we have a name, set of symbols and
      local settings_id = s
      if type(settings_id) ~= 'number' then
        settings_id = lua_settings.numeric_settings_id(s)
      end
      local selt = lua_settings.settings_by_id(settings_id)

      local nelt = {
        symbols = selt.symbols, -- Already sorted
        name = selt.name
      }

      process_settings_elt(rule, nelt)
      for id,ex in pairs(rule.settings) do
        if type(ex) == 'table' then
          if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then
            -- Equal symbols, add reference
            lua_util.debugm(N, rspamd_config,
                'added reference from settings id %s to %s; same symbols',
                nelt.name, ex.name)
            rule.settings[settings_id] = id
            nelt = nil
          end
        end
      end

      if nelt then
        rule.settings[settings_id] = nelt
        lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s',
            nelt.name, settings_id, rule.prefix)
      end
    end
  end
end

redis_params = lua_redis.parse_redis_server('neural')

if not redis_params then
  redis_params = lua_redis.parse_redis_server('fann_redis')
end

-- Initialization part
if not (module_config and type(module_config) == 'table') or not redis_params then
  rspamd_logger.infox(rspamd_config, 'Module is unconfigured')
  lua_util.disable_module(N, "redis")
  return
end

local rules = module_config['rules']

if not rules then
  -- Use legacy configuration
  rules = {}
  rules['default'] = module_config
end

local id = rspamd_config:register_symbol({
  name = 'NEURAL_CHECK',
  type = 'postfilter,callback',
  flags = 'nostat',
  priority = 6,
  callback = ann_scores_filter
})

settings = lua_util.override_defaults(settings, module_config)
settings.rules = {} -- Reset unless validated further in the cycle

-- Check all rules
for k,r in pairs(rules) do
  local rule_elt = lua_util.override_defaults(default_options, r)
  rule_elt['redis'] = redis_params
  rule_elt['anns'] = {} -- Store ANNs here

  if not rule_elt.prefix then
    rule_elt.prefix = k
  end
  if not rule_elt.name then
    rule_elt.name = k
  end
  if rule_elt.train.max_train and not rule_elt.train.max_trains then
    rule_elt.train.max_trains = rule_elt.train.max_train
  end

  if not rule_elt.profile then rule_elt.profile = {} end

  rspamd_logger.infox(rspamd_config, "register ann rule %s", k)
  settings.rules[k] = rule_elt
  rspamd_config:set_metric_symbol({
    name = rule_elt.symbol_spam,
    score = 0.0,
    description = 'Neural network SPAM',
    group = 'neural'
  })
  rspamd_config:register_symbol({
    name = rule_elt.symbol_spam,
    type = 'virtual',
    flags = 'nostat',
    parent = id
  })

  rspamd_config:set_metric_symbol({
    name = rule_elt.symbol_ham,
    score = -0.0,
    description = 'Neural network HAM',
    group = 'neural'
  })
  rspamd_config:register_symbol({
    name = rule_elt.symbol_ham,
    type = 'virtual',
    flags = 'nostat',
    parent = id
  })
end

rspamd_config:register_symbol({
  name = 'NEURAL_LEARN',
  type = 'idempotent,callback',
  flags = 'nostat,explicit_disable',
  priority = 5,
  callback = ann_push_vector
})

-- Add training scripts
for _,rule in pairs(settings.rules) do
  load_scripts(rule.redis)
  -- We also need to deal with settings
  rspamd_config:add_post_init(process_rules_settings)
  -- This function will check ANNs in Redis when a worker is loaded
  rspamd_config:add_on_load(function(cfg, ev_base, worker)
    if worker:is_scanner() then
      rspamd_config:add_periodic(ev_base, 0.0,
          function(_, _)
            return check_anns(worker, cfg, ev_base, rule, process_existing_ann,
                'try_load_ann')
          end)
    end

    if worker:is_primary_controller() then
      -- We also want to train neural nets when they have enough data
      rspamd_config:add_periodic(ev_base, 0.0,
          function(_, _)
            -- Clean old ANNs
            cleanup_anns(rule, cfg, ev_base)
            return check_anns(worker, cfg, ev_base, rule, maybe_train_existing_ann,
                'try_train_ann')
          end)
    end
  end)
end