1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
|
--[[
Copyright (c) 2022, Vsevolod Stakhov <vsevolod@rspamd.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--
if confighelp then
return
end
local fun = require "fun"
local lua_redis = require "lua_redis"
local lua_util = require "lua_util"
local lua_verdict = require "lua_verdict"
local neural_common = require "plugins/neural"
local rspamd_kann = require "rspamd_kann"
local rspamd_logger = require "rspamd_logger"
local rspamd_tensor = require "rspamd_tensor"
local rspamd_text = require "rspamd_text"
local rspamd_util = require "rspamd_util"
local ts = require("tableshape").types
local N = "neural"
local settings = neural_common.settings
local redis_profile_schema = ts.shape{
digest = ts.string,
symbols = ts.array_of(ts.string),
version = ts.number,
redis_key = ts.string,
distance = ts.number:is_optional(),
}
local has_blas = rspamd_tensor.has_blas()
local text_cookie = rspamd_text.cookie
-- Creates and stores ANN profile in Redis
local function new_ann_profile(task, rule, set, version)
local ann_key = neural_common.new_ann_key(rule, set, version, settings)
local profile = {
symbols = set.symbols,
redis_key = ann_key,
version = version,
digest = set.digest,
distance = 0 -- Since we are using our own profile
}
local ucl = require "ucl"
local profile_serialized = ucl.to_format(profile, 'json-compact', true)
local function add_cb(err, _)
if err then
rspamd_logger.errx(task, 'cannot store ANN profile for %s:%s at %s : %s',
rule.prefix, set.name, profile.redis_key, err)
else
rspamd_logger.infox(task, 'created new ANN profile for %s:%s, data stored at prefix %s',
rule.prefix, set.name, profile.redis_key)
end
end
lua_redis.redis_make_request(task,
rule.redis,
nil,
true, -- is write
add_cb, --callback
'ZADD', -- command
{set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
)
return profile
end
-- ANN filter function, used to insert scores based on the existing symbols
local function ann_scores_filter(task)
for _,rule in pairs(settings.rules) do
local sid = task:get_settings_id() or -1
local ann
local profile
local set = neural_common.get_rule_settings(task, rule)
if set then
if set.ann then
ann = set.ann.ann
profile = set.ann
else
lua_util.debugm(N, task, 'no ann loaded for %s:%s',
rule.prefix, set.name)
end
else
lua_util.debugm(N, task, 'no ann defined in %s for settings id %s',
rule.prefix, sid)
end
if ann then
local vec = neural_common.result_to_vector(task, profile)
local score
local out = ann:apply1(vec, set.ann.pca)
score = out[1]
local symscore = string.format('%.3f', score)
task:cache_set(rule.prefix .. '_neural_score', score)
lua_util.debugm(N, task, '%s:%s:%s ann score: %s',
rule.prefix, set.name, set.ann.version, symscore)
if score > 0 then
local result = score
-- If spam_score_threshold is defined, override all other thresholds.
local spam_threshold = 0
if rule.spam_score_threshold then
spam_threshold = rule.spam_score_threshold
elseif rule.roc_enabled and not set.ann.roc_thresholds then
spam_threshold = set.ann.roc_thresholds[1]
end
if result >= spam_threshold then
if rule.flat_threshold_curve then
task:insert_result(rule.symbol_spam, 1.0, symscore)
else
task:insert_result(rule.symbol_spam, result, symscore)
end
else
lua_util.debugm(N, task, '%s:%s:%s ann score: %s < %s (spam threshold)',
rule.prefix, set.name, set.ann.version, symscore,
spam_threshold)
end
else
local result = -(score)
-- If ham_score_threshold is defined, override all other thresholds.
local ham_threshold = 0
if rule.ham_score_threshold then
ham_threshold = rule.ham_score_threshold
elseif rule.roc_enabled and not set.ann.roc_thresholds then
ham_threshold = set.ann.roc_thresholds[2]
end
if result >= ham_threshold then
if rule.flat_threshold_curve then
task:insert_result(rule.symbol_ham, 1.0, symscore)
else
task:insert_result(rule.symbol_ham, result, symscore)
end
else
lua_util.debugm(N, task, '%s:%s:%s ann score: %s < %s (ham threshold)',
rule.prefix, set.name, set.ann.version, result,
ham_threshold)
end
end
end
end
end
local function ann_push_task_result(rule, task, verdict, score, set)
local train_opts = rule.train
local learn_spam, learn_ham
local skip_reason = 'unknown'
if not train_opts.store_pool_only and train_opts.autotrain then
if train_opts.spam_score then
learn_spam = score >= train_opts.spam_score
if not learn_spam then
skip_reason = string.format('score < spam_score: %f < %f',
score, train_opts.spam_score)
end
else
learn_spam = verdict == 'spam' or verdict == 'junk'
if not learn_spam then
skip_reason = string.format('verdict: %s',
verdict)
end
end
if train_opts.ham_score then
learn_ham = score <= train_opts.ham_score
if not learn_ham then
skip_reason = string.format('score > ham_score: %f > %f',
score, train_opts.ham_score)
end
else
learn_ham = verdict == 'ham'
if not learn_ham then
skip_reason = string.format('verdict: %s',
verdict)
end
end
else
-- Train by request header
local hdr = task:get_request_header('ANN-Train')
if hdr then
if hdr:lower() == 'spam' then
learn_spam = true
elseif hdr:lower() == 'ham' then
learn_ham = true
else
skip_reason = 'no explicit header'
end
elseif train_opts.store_pool_only then
local ucl = require "ucl"
learn_ham = false
learn_spam = false
-- Explicitly store tokens in cache
local vec = neural_common.result_to_vector(task, set)
task:cache_set(rule.prefix .. '_neural_vec_mpack', ucl.to_format(vec, 'msgpack'))
task:cache_set(rule.prefix .. '_neural_profile_digest', set.digest)
skip_reason = 'store_pool_only has been set'
end
end
if learn_spam or learn_ham then
local learn_type
if learn_spam then learn_type = 'spam' else learn_type = 'ham' end
local function vectors_len_cb(err, data)
if not err and type(data) == 'table' then
local nspam,nham = data[1],data[2]
if neural_common.can_push_train_vector(rule, task, learn_type, nspam, nham) then
local vec = neural_common.result_to_vector(task, set)
local str = rspamd_util.zstd_compress(table.concat(vec, ';'))
local target_key = set.ann.redis_key .. '_' .. learn_type .. '_set'
local function learn_vec_cb(redis_err)
if redis_err then
rspamd_logger.errx(task, 'cannot store train vector for %s:%s: %s',
rule.prefix, set.name, redis_err)
else
lua_util.debugm(N, task,
"add train data for ANN rule " ..
"%s:%s, save %s vector of %s elts in %s key; %s bytes compressed",
rule.prefix, set.name, learn_type, #vec, target_key, #str)
end
end
lua_redis.redis_make_request(task,
rule.redis,
nil,
true, -- is write
learn_vec_cb, --callback
'SADD', -- command
{ target_key, str } -- arguments
)
else
lua_util.debugm(N, task,
"do not add %s train data for ANN rule " ..
"%s:%s",
learn_type, rule.prefix, set.name)
end
else
if err then
rspamd_logger.errx(task, 'cannot check if we can train %s:%s : %s',
rule.prefix, set.name, err)
elseif type(data) == 'string' then
-- nil return value
rspamd_logger.infox(task, "cannot learn %s ANN %s:%s; redis_key: %s: locked for learning: %s",
learn_type, rule.prefix, set.name, set.ann.redis_key, data)
else
rspamd_logger.errx(task, 'cannot check if we can train %s:%s : type of Redis key %s is %s, expected table' ..
'please remove this key from Redis manually if you perform upgrade from the previous version',
rule.prefix, set.name, set.ann.redis_key, type(data))
end
end
end
-- Check if we can learn
if set.can_store_vectors then
if not set.ann then
-- Need to create or load a profile corresponding to the current configuration
set.ann = new_ann_profile(task, rule, set, 0)
lua_util.debugm(N, task,
'requested new profile for %s, set.ann is missing',
set.name)
end
lua_redis.exec_redis_script(neural_common.redis_script_id.vectors_len,
{task = task, is_write = false},
vectors_len_cb,
{
set.ann.redis_key,
})
else
lua_util.debugm(N, task,
'do not push data: train condition not satisfied; reason: not checked existing ANNs')
end
else
lua_util.debugm(N, task,
'do not push data to key %s: train condition not satisfied; reason: %s',
(set.ann or {}).redis_key,
skip_reason)
end
end
--- Offline training logic
-- Utility to extract and split saved training vectors to a table of tables
local function process_training_vectors(data)
return fun.totable(fun.map(function(tok)
local _,str = rspamd_util.zstd_decompress(tok)
return fun.totable(fun.map(tonumber, lua_util.str_split(tostring(str), ';')))
end, data))
end
-- This function does the following:
-- * Tries to lock ANN
-- * Loads spam and ham vectors
-- * Spawn learning process
local function do_train_ann(worker, ev_base, rule, set, ann_key)
local spam_elts = {}
local ham_elts = {}
local function redis_ham_cb(err, data)
if err or type(data) ~= 'table' then
rspamd_logger.errx(rspamd_config, 'cannot get ham tokens for ANN %s from redis: %s',
ann_key, err)
-- Unlock on error
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
true, -- is write
neural_common.gen_unlock_cb(rule, set, ann_key), --callback
'HDEL', -- command
{ann_key, 'lock'}
)
else
-- Decompress and convert to numbers each training vector
ham_elts = process_training_vectors(data)
neural_common.spawn_train({worker = worker, ev_base = ev_base,
rule = rule, set = set, ann_key = ann_key, ham_vec = ham_elts,
spam_vec = spam_elts})
end
end
-- Spam vectors received
local function redis_spam_cb(err, data)
if err or type(data) ~= 'table' then
rspamd_logger.errx(rspamd_config, 'cannot get spam tokens for ANN %s from redis: %s',
ann_key, err)
-- Unlock ANN on error
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
true, -- is write
neural_common.gen_unlock_cb(rule, set, ann_key), --callback
'HDEL', -- command
{ann_key, 'lock'}
)
else
-- Decompress and convert to numbers each training vector
spam_elts = process_training_vectors(data)
-- Now get ham vectors...
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
false, -- is write
redis_ham_cb, --callback
'SMEMBERS', -- command
{ann_key .. '_ham_set'}
)
end
end
local function redis_lock_cb(err, data)
if err then
rspamd_logger.errx(rspamd_config, 'cannot call lock script for ANN %s from redis: %s',
ann_key, err)
elseif type(data) == 'number' and data == 1 then
-- ANN is locked, so we can extract SPAM and HAM vectors and spawn learning
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
false, -- is write
redis_spam_cb, --callback
'SMEMBERS', -- command
{ann_key .. '_spam_set'}
)
rspamd_logger.infox(rspamd_config, 'lock ANN %s:%s (key name %s) for learning',
rule.prefix, set.name, ann_key)
else
local lock_tm = tonumber(data[1])
rspamd_logger.infox(rspamd_config, 'do not learn ANN %s:%s (key name %s), ' ..
'locked by another host %s at %s', rule.prefix, set.name, ann_key,
data[2], os.date('%c', lock_tm))
end
end
-- Check if we are already learning this network
if set.learning_spawned then
rspamd_logger.infox(rspamd_config, 'do not learn ANN %s, already learning another ANN',
ann_key)
return
end
-- Call Redis script that tries to acquire a lock
-- This script returns either a boolean or a pair {'lock_time', 'hostname'} when
-- ANN is locked by another host (or a process, meh)
lua_redis.exec_redis_script(neural_common.redis_script_id.maybe_lock,
{ev_base = ev_base, is_write = true},
redis_lock_cb,
{
ann_key,
tostring(os.time()),
tostring(math.max(10.0, rule.watch_interval * 2)),
rspamd_util.get_hostname()
})
end
-- This function loads new ann from Redis
-- This is based on `profile` attribute.
-- ANN is loaded from `profile.redis_key`
-- Rank of `profile` key is also increased, unfortunately, it means that we need to
-- serialize profile one more time and set its rank to the current time
-- set.ann fields are set according to Redis data received
local function load_new_ann(rule, ev_base, set, profile, min_diff)
local ann_key = profile.redis_key
local function data_cb(err, data)
if err then
rspamd_logger.errx(rspamd_config, 'cannot get ANN data from key: %s; %s',
ann_key, err)
else
if type(data) == 'table' then
if type(data[1]) == 'userdata' and data[1].cookie == text_cookie then
local _err,ann_data = rspamd_util.zstd_decompress(data[1])
local ann
if _err or not ann_data then
rspamd_logger.errx(rspamd_config, 'cannot decompress ANN for %s from Redis key %s: %s',
rule.prefix .. ':' .. set.name, ann_key, _err)
return
else
ann = rspamd_kann.load(ann_data)
if ann then
set.ann = {
digest = profile.digest,
version = profile.version,
symbols = profile.symbols,
distance = min_diff,
redis_key = profile.redis_key
}
local ucl = require "ucl"
local profile_serialized = ucl.to_format(profile, 'json-compact', true)
set.ann.ann = ann -- To avoid serialization
local function rank_cb(_, _)
-- TODO: maybe add some logging
end
-- Also update rank for the loaded ANN to avoid removal
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
true, -- is write
rank_cb, --callback
'ZADD', -- command
{set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
)
rspamd_logger.infox(rspamd_config,
'loaded ANN for %s:%s from %s; %s bytes compressed; version=%s',
rule.prefix, set.name, ann_key, #data[1], profile.version)
else
rspamd_logger.errx(rspamd_config,
'cannot unpack/deserialise ANN for %s:%s from Redis key %s',
rule.prefix, set.name, ann_key)
end
end
else
lua_util.debugm(N, rspamd_config, 'missing ANN for %s:%s in Redis key %s',
rule.prefix, set.name, ann_key)
end
if set.ann and set.ann.ann and type(data[2]) == 'userdata' and data[2].cookie == text_cookie then
if rule.roc_enabled then
local ucl = require "ucl"
local parser = ucl.parser()
local ok, parse_err = parser:parse_text(data[2])
assert(ok, parse_err)
local roc_thresholds = parser:get_object()
set.ann.roc_thresholds = roc_thresholds
rspamd_logger.infox(rspamd_config,
'loaded ROC thresholds for %s:%s; version=%s',
rule.prefix, set.name, profile.version)
rspamd_logger.debugx("ROC thresholds: %s", roc_thresholds)
end
end
if set.ann and set.ann.ann and type(data[3]) == 'userdata' and data[3].cookie == text_cookie then
-- PCA table
local _err,pca_data = rspamd_util.zstd_decompress(data[3])
if pca_data then
if rule.max_inputs then
-- We can use PCA
set.ann.pca = rspamd_tensor.load(pca_data)
rspamd_logger.infox(rspamd_config,
'loaded PCA for ANN for %s:%s from %s; %s bytes compressed; version=%s',
rule.prefix, set.name, ann_key, #data[3], profile.version)
else
-- no need in pca, why is it there?
rspamd_logger.warnx(rspamd_config,
'extra PCA for ANN for %s:%s from Redis key %s: no max inputs defined',
rule.prefix, set.name, ann_key)
end
else
-- pca can be missing merely if we have no max_inputs
if rule.max_inputs then
rspamd_logger.errx(rspamd_config, 'cannot unpack/deserialise ANN for %s:%s from Redis key %s: no PCA: %s',
rule.prefix, set.name, ann_key, _err)
set.ann.ann = nil
else
-- It is okay
set.ann.pca = nil
end
end
end
else
lua_util.debugm(N, rspamd_config, 'no ANN key for %s:%s in Redis key %s',
rule.prefix, set.name, ann_key)
end
end
end
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
false, -- is write
data_cb, --callback
'HMGET', -- command
{ann_key, 'ann', 'roc_thresholds', 'pca'}, -- arguments
{opaque_data = true}
)
end
-- Used to check an element in Redis serialized as JSON
-- for some specific rule + some specific setting
-- This function tries to load more fresh or more specific ANNs in lieu of
-- the existing ones.
-- Use this function to load ANNs as `callback` parameter for `check_anns` function
local function process_existing_ann(_, ev_base, rule, set, profiles)
local my_symbols = set.symbols
local min_diff = math.huge
local sel_elt
for _,elt in fun.iter(profiles) do
if elt and elt.symbols then
local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
-- Check distance
if dist < #my_symbols * .3 then
if dist < min_diff then
min_diff = dist
sel_elt = elt
end
end
end
end
if sel_elt then
-- We can load element from ANN
if set.ann then
-- We have an existing ANN, probably the same...
if set.ann.digest == sel_elt.digest then
-- Same ANN, check version
if set.ann.version < sel_elt.version then
-- Load new ann
rspamd_logger.infox(rspamd_config, 'ann %s is changed, ' ..
'our version = %s, remote version = %s',
rule.prefix .. ':' .. set.name,
set.ann.version,
sel_elt.version)
load_new_ann(rule, ev_base, set, sel_elt, min_diff)
else
lua_util.debugm(N, rspamd_config, 'ann %s is not changed, ' ..
'our version = %s, remote version = %s',
rule.prefix .. ':' .. set.name,
set.ann.version,
sel_elt.version)
end
else
-- We have some different ANN, so we need to compare distance
if set.ann.distance > min_diff then
-- Load more specific ANN
rspamd_logger.infox(rspamd_config, 'more specific ann is available for %s, ' ..
'our distance = %s, remote distance = %s',
rule.prefix .. ':' .. set.name,
set.ann.distance,
min_diff)
load_new_ann(rule, ev_base, set, sel_elt, min_diff)
else
lua_util.debugm(N, rspamd_config, 'ann %s is not changed or less specific, ' ..
'our distance = %s, remote distance = %s',
rule.prefix .. ':' .. set.name,
set.ann.distance,
min_diff)
end
end
else
-- We have no ANN, load new one
load_new_ann(rule, ev_base, set, sel_elt, min_diff)
end
end
end
-- This function checks all profiles and selects if we can train our
-- ANN. By our we mean that it has exactly the same symbols in profile.
-- Use this function to train ANN as `callback` parameter for `check_anns` function
local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
local my_symbols = set.symbols
local sel_elt
local lens = {
spam = 0,
ham = 0,
}
for _,elt in fun.iter(profiles) do
if elt and elt.symbols then
local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
-- Check distance
if dist == 0 then
sel_elt = elt
break
end
end
end
if sel_elt then
-- We have our ANN and that's train vectors, check if we can learn
local ann_key = sel_elt.redis_key
lua_util.debugm(N, rspamd_config, "check if ANN %s needs to be trained",
ann_key)
-- Create continuation closure
local redis_len_cb_gen = function(cont_cb, what, is_final)
return function(err, data)
if err then
rspamd_logger.errx(rspamd_config,
'cannot get ANN %s trains %s from redis: %s', what, ann_key, err)
elseif data and type(data) == 'number' or type(data) == 'string' then
local ntrains = tonumber(data) or 0
lens[what] = ntrains
if is_final then
-- Ensure that we have the following:
-- one class has reached max_trains
-- other class(es) are at least as full as classes_bias
-- e.g. if classes_bias = 0.25 and we have 10 max_trains then
-- one class must have 10 or more trains whilst another should have
-- at least (10 * (1 - 0.25)) = 8 trains
local max_len = math.max(lua_util.unpack(lua_util.values(lens)))
local min_len = math.min(lua_util.unpack(lua_util.values(lens)))
if rule.train.learn_type == 'balanced' then
local len_bias_check_pred = function(_, l)
return l >= rule.train.max_trains * (1.0 - rule.train.classes_bias)
end
if max_len >= rule.train.max_trains and fun.all(len_bias_check_pred, lens) then
rspamd_logger.debugm(N, rspamd_config,
'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
ann_key, lens, rule.train.max_trains, what)
cont_cb()
else
rspamd_logger.debugm(N, rspamd_config,
'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
ann_key, what, lens, rule.train.max_trains)
end
else
-- Probabilistic mode, just ensure that at least one vector is okay
if min_len > 0 and max_len >= rule.train.max_trains then
rspamd_logger.debugm(N, rspamd_config,
'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
ann_key, lens, rule.train.max_trains, what)
cont_cb()
else
rspamd_logger.debugm(N, rspamd_config,
'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
ann_key, what, lens, rule.train.max_trains)
end
end
else
rspamd_logger.debugm(N, rspamd_config,
'checked %s vectors in ANN %s: %s vectors; %s required, need to check other class vectors',
what, ann_key, ntrains, rule.train.max_trains)
cont_cb()
end
end
end
end
local function initiate_train()
rspamd_logger.infox(rspamd_config,
'need to learn ANN %s after %s required learn vectors',
ann_key, lens)
do_train_ann(worker, ev_base, rule, set, ann_key)
end
-- Spam vector is OK, check ham vector length
local function check_ham_len()
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
false, -- is write
redis_len_cb_gen(initiate_train, 'ham', true), --callback
'SCARD', -- command
{ann_key .. '_ham_set'}
)
end
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
false, -- is write
redis_len_cb_gen(check_ham_len, 'spam', false), --callback
'SCARD', -- command
{ann_key .. '_spam_set'}
)
end
end
-- Used to deserialise ANN element from a list
local function load_ann_profile(element)
local ucl = require "ucl"
local parser = ucl.parser()
local res,ucl_err = parser:parse_string(element)
if not res then
rspamd_logger.warnx(rspamd_config, 'cannot parse ANN from redis: %s',
ucl_err)
return nil
else
local profile = parser:get_object()
local checked,schema_err = redis_profile_schema:transform(profile)
if not checked then
rspamd_logger.errx(rspamd_config, "cannot parse profile schema: %s", schema_err)
return nil
end
return checked
end
end
-- Function to check or load ANNs from Redis
local function check_anns(worker, cfg, ev_base, rule, process_callback, what)
for _,set in pairs(rule.settings) do
local function members_cb(err, data)
if err then
rspamd_logger.errx(cfg, 'cannot get ANNs list from redis: %s',
err)
set.can_store_vectors = true
elseif type(data) == 'table' then
lua_util.debugm(N, cfg, '%s: process element %s:%s',
what, rule.prefix, set.name)
process_callback(worker, ev_base, rule, set, fun.map(load_ann_profile, data))
set.can_store_vectors = true
end
end
if type(set) == 'table' then
-- Extract all profiles for some specific settings id
-- Get the last `max_profiles` recently used
-- Select the most appropriate to our profile but it should not differ by more
-- than 30% of symbols
lua_redis.redis_make_request_taskless(ev_base,
cfg,
rule.redis,
nil,
false, -- is write
members_cb, --callback
'ZREVRANGE', -- command
{set.prefix, '0', tostring(settings.max_profiles)} -- arguments
)
end
end -- Cycle over all settings
return rule.watch_interval
end
-- Function to clean up old ANNs
local function cleanup_anns(rule, cfg, ev_base)
for _,set in pairs(rule.settings) do
local function invalidate_cb(err, data)
if err then
rspamd_logger.errx(cfg, 'cannot exec invalidate script in redis: %s',
err)
elseif type(data) == 'table' then
for _,expired in ipairs(data) do
local profile = load_ann_profile(expired)
rspamd_logger.infox(cfg, 'invalidated ANN for %s; redis key: %s; version=%s',
rule.prefix .. ':' .. set.name,
profile.redis_key,
profile.version)
end
end
end
if type(set) == 'table' then
lua_redis.exec_redis_script(neural_common.redis_script_id.maybe_invalidate,
{ev_base = ev_base, is_write = true},
invalidate_cb,
{set.prefix, tostring(settings.max_profiles)})
end
end
end
local function ann_push_vector(task)
if task:has_flag('skip') then
lua_util.debugm(N, task, 'do not push data for skipped task')
return
end
if not settings.allow_local and lua_util.is_rspamc_or_controller(task) then
lua_util.debugm(N, task, 'do not push data for manual scan')
return
end
local verdict,score = lua_verdict.get_specific_verdict(N, task)
if verdict == 'passthrough' then
lua_util.debugm(N, task, 'ignore task as its verdict is %s(%s)',
verdict, score)
return
end
if score ~= score then
lua_util.debugm(N, task, 'ignore task as its score is nan (%s verdict)',
verdict)
return
end
for _,rule in pairs(settings.rules) do
local set = neural_common.get_rule_settings(task, rule)
if set then
ann_push_task_result(rule, task, verdict, score, set)
else
lua_util.debugm(N, task, 'settings not found in rule %s', rule.prefix)
end
end
end
-- Initialization part
if not (neural_common.module_config and type(neural_common.module_config) == 'table')
or not neural_common.redis_params then
rspamd_logger.infox(rspamd_config, 'Module is unconfigured')
lua_util.disable_module(N, "redis")
return
end
local rules = neural_common.module_config['rules']
if not rules then
-- Use legacy configuration
rules = {}
rules['default'] = neural_common.module_config
end
local id = rspamd_config:register_symbol({
name = 'NEURAL_CHECK',
type = 'postfilter,callback',
flags = 'nostat',
priority = 6,
callback = ann_scores_filter
})
neural_common.settings.rules = {} -- Reset unless validated further in the cycle
if settings.blacklisted_symbols and settings.blacklisted_symbols[1] then
-- Transform to hash for simplicity
settings.blacklisted_symbols = lua_util.list_to_hash(settings.blacklisted_symbols)
end
-- Check all rules
for k,r in pairs(rules) do
local rule_elt = lua_util.override_defaults(neural_common.default_options, r)
rule_elt['redis'] = neural_common.redis_params
rule_elt['anns'] = {} -- Store ANNs here
if not rule_elt.prefix then
rule_elt.prefix = k
end
if not rule_elt.name then
rule_elt.name = k
end
if rule_elt.train.max_train and not rule_elt.train.max_trains then
rule_elt.train.max_trains = rule_elt.train.max_train
end
if not rule_elt.profile then rule_elt.profile = {} end
if rule_elt.max_inputs and not has_blas then
rspamd_logger.errx('cannot set max inputs to %s as BLAS is not compiled in',
rule_elt.name, rule_elt.max_inputs)
rule_elt.max_inputs = nil
end
rspamd_logger.infox(rspamd_config, "register ann rule %s", k)
settings.rules[k] = rule_elt
rspamd_config:set_metric_symbol({
name = rule_elt.symbol_spam,
score = 0.0,
description = 'Neural network SPAM',
group = 'neural'
})
rspamd_config:register_symbol({
name = rule_elt.symbol_spam,
type = 'virtual',
flags = 'nostat',
parent = id
})
rspamd_config:set_metric_symbol({
name = rule_elt.symbol_ham,
score = -0.0,
description = 'Neural network HAM',
group = 'neural'
})
rspamd_config:register_symbol({
name = rule_elt.symbol_ham,
type = 'virtual',
flags = 'nostat',
parent = id
})
end
rspamd_config:register_symbol({
name = 'NEURAL_LEARN',
type = 'idempotent,callback',
flags = 'nostat,explicit_disable,ignore_passthrough',
priority = 5,
callback = ann_push_vector
})
-- We also need to deal with settings
rspamd_config:add_post_init(neural_common.process_rules_settings)
-- Add training scripts
for _,rule in pairs(settings.rules) do
neural_common.load_scripts(rule.redis)
-- This function will check ANNs in Redis when a worker is loaded
rspamd_config:add_on_load(function(cfg, ev_base, worker)
if worker:is_scanner() then
rspamd_config:add_periodic(ev_base, 0.0,
function(_, _)
return check_anns(worker, cfg, ev_base, rule, process_existing_ann,
'try_load_ann')
end)
end
if worker:is_primary_controller() then
-- We also want to train neural nets when they have enough data
rspamd_config:add_periodic(ev_base, 0.0,
function(_, _)
-- Clean old ANNs
cleanup_anns(rule, cfg, ev_base)
return check_anns(worker, cfg, ev_base, rule, maybe_train_existing_ann,
'try_train_ann')
end)
end
end)
end
|