1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved.
* Copyright 2014-2017 Pierre Ossman for Cendio AB
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
* USA.
*/
#include <assert.h>
#include <string.h>
#include <rfb/Cursor.h>
#include <rfb/LogWriter.h>
#include <rfb/Exception.h>
using namespace rfb;
static LogWriter vlog("Cursor");
Cursor::Cursor(int width, int height, const Point& hotspot,
const rdr::U8* data) :
width_(width), height_(height), hotspot_(hotspot)
{
this->data = new rdr::U8[width_*height_*4];
memcpy(this->data, data, width_*height_*4);
}
Cursor::Cursor(const Cursor& other) :
width_(other.width_), height_(other.height_),
hotspot_(other.hotspot_)
{
data = new rdr::U8[width_*height_*4];
memcpy(data, other.data, width_*height_*4);
}
Cursor::~Cursor()
{
delete [] data;
}
static unsigned short pow223[] = { 0, 30, 143, 355, 676, 1113, 1673,
2361, 3181, 4139, 5237, 6479, 7869,
9409, 11103, 12952, 14961, 17130,
19462, 21960, 24626, 27461, 30467,
33647, 37003, 40535, 44245, 48136,
52209, 56466, 60907, 65535 };
static unsigned short ipow(unsigned short val, unsigned short lut[])
{
int idx = val >> (16-5);
int a, b;
if (val < 0x8000) {
a = lut[idx];
b = lut[idx+1];
} else {
a = lut[idx-1];
b = lut[idx];
}
return (val & 0x7ff) * (b-a) / 0x7ff + a;
}
static unsigned short srgb_to_lin(unsigned char srgb)
{
return ipow((unsigned)srgb * 65535 / 255, pow223);
}
// Floyd-Steinberg dithering
static void dither(int width, int height, int* data)
{
for (int y = 0; y < height; y++) {
for (int x_ = 0; x_ < width; x_++) {
int x = (y & 1) ? (width - x_ - 1) : x_;
int error;
if (data[x] > 32767) {
error = data[x] - 65535;
data[x] = 65535;
} else {
error = data[x] - 0;
data[x] = 0;
}
if (y & 1) {
if (x > 0) {
data[x - 1] += error * 7 / 16;
}
if ((y + 1) < height) {
if (x > 0)
data[x - 1 + width] += error * 3 / 16;
data[x + width] += error * 5 / 16;
if ((x + 1) < width)
data[x + 1] += error * 1 / 16;
}
} else {
if ((x + 1) < width) {
data[x + 1] += error * 7 / 16;
}
if ((y + 1) < height) {
if ((x + 1) < width)
data[x + 1 + width] += error * 3 / 16;
data[x + width] += error * 5 / 16;
if (x > 0)
data[x - 1] += error * 1 / 16;
}
}
}
data += width;
}
}
rdr::U8* Cursor::getBitmap() const
{
// First step is converting to luminance
int luminance[width()*height()];
int *lum_ptr = luminance;
const rdr::U8 *data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
// Use BT.709 coefficients for grayscale
*lum_ptr = 0;
*lum_ptr += (int)srgb_to_lin(data_ptr[0]) * 6947; // 0.2126
*lum_ptr += (int)srgb_to_lin(data_ptr[1]) * 23436; // 0.7152
*lum_ptr += (int)srgb_to_lin(data_ptr[2]) * 2366; // 0.0722
*lum_ptr /= 32768;
lum_ptr++;
data_ptr += 4;
}
}
// Then diterhing
dither(width(), height(), luminance);
// Then conversion to a bit mask
rdr::U8Array source((width()+7)/8*height());
memset(source.buf, 0, (width()+7)/8*height());
int maskBytesPerRow = (width() + 7) / 8;
lum_ptr = luminance;
data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
int byte = y * maskBytesPerRow + x / 8;
int bit = 7 - x % 8;
if (*lum_ptr > 32767)
source.buf[byte] |= (1 << bit);
lum_ptr++;
data_ptr += 4;
}
}
return source.takeBuf();
}
rdr::U8* Cursor::getMask() const
{
// First step is converting to integer array
int alpha[width()*height()];
int *alpha_ptr = alpha;
const rdr::U8 *data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
*alpha_ptr = (int)data_ptr[3] * 65535 / 255;
alpha_ptr++;
data_ptr += 4;
}
}
// Then diterhing
dither(width(), height(), alpha);
// Then conversion to a bit mask
rdr::U8Array mask((width()+7)/8*height());
memset(mask.buf, 0, (width()+7)/8*height());
int maskBytesPerRow = (width() + 7) / 8;
alpha_ptr = alpha;
data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
int byte = y * maskBytesPerRow + x / 8;
int bit = 7 - x % 8;
if (*alpha_ptr > 32767)
mask.buf[byte] |= (1 << bit);
alpha_ptr++;
data_ptr += 4;
}
}
return mask.takeBuf();
}
// crop() determines the "busy" rectangle for the cursor - the minimum bounding
// rectangle containing actual pixels. This isn't the most efficient algorithm
// but it's short. For sanity, we make sure that the busy rectangle always
// includes the hotspot (the hotspot is unsigned on the wire so otherwise it
// would cause problems if it was above or left of the actual pixels)
void Cursor::crop()
{
Rect busy = Rect(0, 0, width_, height_);
busy = busy.intersect(Rect(hotspot_.x, hotspot_.y,
hotspot_.x+1, hotspot_.y+1));
int x, y;
rdr::U8 *data_ptr = data;
for (y = 0; y < height(); y++) {
for (x = 0; x < width(); x++) {
if (data_ptr[3] > 0) {
if (x < busy.tl.x) busy.tl.x = x;
if (x+1 > busy.br.x) busy.br.x = x+1;
if (y < busy.tl.y) busy.tl.y = y;
if (y+1 > busy.br.y) busy.br.y = y+1;
}
data_ptr += 4;
}
}
if (width() == busy.width() && height() == busy.height()) return;
// Copy the pixel data
int newDataLen = busy.area() * 4;
rdr::U8* newData = new rdr::U8[newDataLen];
data_ptr = newData;
for (y = busy.tl.y; y < busy.br.y; y++) {
memcpy(data_ptr, data + y*width()*4 + busy.tl.x*4, busy.width()*4);
data_ptr += busy.width()*4;
}
// Set the size and data to the new, cropped cursor.
width_ = busy.width();
height_ = busy.height();
hotspot_ = hotspot_.subtract(busy.tl);
delete [] data;
data = newData;
}
RenderedCursor::RenderedCursor()
{
}
const rdr::U8* RenderedCursor::getBuffer(const Rect& _r, int* stride) const
{
Rect r;
r = _r.translate(offset.negate());
if (!r.enclosed_by(buffer.getRect()))
throw Exception("RenderedCursor: Invalid area requested");
return buffer.getBuffer(r, stride);
}
void RenderedCursor::update(PixelBuffer* framebuffer,
Cursor* cursor, const Point& pos)
{
Point rawOffset, diff;
Rect clippedRect;
const rdr::U8* data;
int stride;
assert(framebuffer);
assert(cursor);
format = framebuffer->getPF();
width_ = framebuffer->width();
height_ = framebuffer->height();
rawOffset = pos.subtract(cursor->hotspot());
clippedRect = Rect(0, 0, cursor->width(), cursor->height())
.translate(rawOffset)
.intersect(framebuffer->getRect());
offset = clippedRect.tl;
buffer.setPF(format);
buffer.setSize(clippedRect.width(), clippedRect.height());
// Bail out early to avoid pestering the framebuffer with
// bogus coordinates
if (clippedRect.area() == 0)
return;
data = framebuffer->getBuffer(buffer.getRect(offset), &stride);
buffer.imageRect(buffer.getRect(), data, stride);
diff = offset.subtract(rawOffset);
for (int y = 0;y < buffer.height();y++) {
for (int x = 0;x < buffer.width();x++) {
size_t idx;
rdr::U8 bg[4], fg[4];
rdr::U8 rgb[3];
idx = (y+diff.y)*cursor->width() + (x+diff.x);
memcpy(fg, cursor->getBuffer() + idx*4, 4);
if (fg[3] == 0x00)
continue;
else if (fg[3] == 0xff) {
memcpy(rgb, fg, 3);
} else {
buffer.getImage(bg, Rect(x, y, x+1, y+1));
format.rgbFromBuffer(rgb, bg, 1);
// FIXME: Gamma aware blending
for (int i = 0;i < 3;i++) {
rgb[i] = (unsigned)rgb[i]*(255-fg[3])/255 +
(unsigned)fg[i]*fg[3]/255;
}
}
format.bufferFromRGB(bg, rgb, 1);
buffer.imageRect(Rect(x, y, x+1, y+1), bg);
}
}
}
|