1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
/* Copyright (C) 2002-2003 RealVNC Ltd. All Rights Reserved.
* Copyright (C) 2005 Constantin Kaplinsky. All Rights Reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
* USA.
*/
//
// Hextile encoding function.
//
// This file is #included after having set the following macros:
// BPP - 8, 16 or 32
// EXTRA_ARGS - optional extra arguments
// GET_IMAGE_INTO_BUF - gets a rectangle of pixel data into a buffer
#include <rdr/OutStream.h>
#include <rfb/hextileConstants.h>
#include <rfb/TightPalette.h>
#include <assert.h>
namespace rfb {
// CONCAT2E concatenates its arguments, expanding them if they are macros
#ifndef CONCAT2E
#define CONCAT2(a,b) a##b
#define CONCAT2E(a,b) CONCAT2(a,b)
#endif
#define PIXEL_T rdr::CONCAT2E(U,BPP)
#define WRITE_PIXEL CONCAT2E(writeOpaque,BPP)
#define HEXTILE_TILE CONCAT2E(HextileTile,BPP)
#define HEXTILE_ENCODE CONCAT2E(hextileEncodeBetter,BPP)
//
// This class analyzes a separate tile and encodes its subrectangles.
//
class HEXTILE_TILE {
public:
HEXTILE_TILE ();
//
// Initialize existing object instance with new tile data.
//
void newTile(const PIXEL_T *src, int w, int h);
//
// Flags can include: hextileRaw, hextileAnySubrects and
// hextileSubrectsColoured. Note that if hextileRaw is set, other
// flags make no sense. Also, hextileSubrectsColoured is meaningful
// only when hextileAnySubrects is set as well.
//
int getFlags() const { return m_flags; }
//
// Returns the size of encoded subrects data, including subrect count.
// The size is zero if flags do not include hextileAnySubrects.
//
int getSize() const { return m_size; }
//
// Return optimal background.
//
int getBackground() const { return m_background; }
//
// Return foreground if flags include hextileSubrectsColoured.
//
int getForeground() const { return m_foreground; }
//
// Encode subrects. This function may be called only if
// hextileAnySubrects bit is set in flags. The buffer size should be
// big enough to store at least the number of bytes returned by the
// getSize() method.
//
void encode(rdr::U8* dst) const;
protected:
//
// Analyze the tile pixels, fill in all the data fields.
//
void analyze();
const PIXEL_T *m_tile;
int m_width;
int m_height;
int m_size;
int m_flags;
PIXEL_T m_background;
PIXEL_T m_foreground;
int m_numSubrects;
rdr::U8 m_coords[256 * 2];
PIXEL_T m_colors[256];
private:
bool m_processed[16][16];
TightPalette m_pal;
};
HEXTILE_TILE::HEXTILE_TILE()
: m_tile(NULL), m_width(0), m_height(0),
m_size(0), m_flags(0), m_background(0), m_foreground(0),
m_numSubrects(0), m_pal(48 + 2 * BPP)
{
}
void HEXTILE_TILE::newTile(const PIXEL_T *src, int w, int h)
{
m_tile = src;
m_width = w;
m_height = h;
analyze();
}
void HEXTILE_TILE::analyze()
{
assert(m_tile && m_width && m_height);
const PIXEL_T *ptr = m_tile;
const PIXEL_T *end = &m_tile[m_width * m_height];
PIXEL_T color = *ptr++;
while (ptr != end && *ptr == color)
ptr++;
// Handle solid tile
if (ptr == end) {
m_background = m_tile[0];
m_flags = 0;
m_size = 0;
return;
}
// Compute number of complete rows of the same color, at the top
int y = (ptr - m_tile) / m_width;
PIXEL_T *colorsPtr = m_colors;
rdr::U8 *coordsPtr = m_coords;
m_pal.reset();
m_numSubrects = 0;
// Have we found the first subrect already?
if (y > 0) {
*colorsPtr++ = color;
*coordsPtr++ = 0;
*coordsPtr++ = (rdr::U8)(((m_width - 1) << 4) | ((y - 1) & 0x0F));
m_pal.insert(color, 1);
m_numSubrects++;
}
memset(m_processed, 0, 16 * 16 * sizeof(bool));
int x, sx, sy, sw, sh, max_x;
for (; y < m_height; y++) {
for (x = 0; x < m_width; x++) {
// Skip pixels that were processed earlier
if (m_processed[y][x]) {
continue;
}
// Determine dimensions of the horizontal subrect
color = m_tile[y * m_width + x];
for (sx = x + 1; sx < m_width; sx++) {
if (m_tile[y * m_width + sx] != color)
break;
}
sw = sx - x;
max_x = sx;
for (sy = y + 1; sy < m_height; sy++) {
for (sx = x; sx < max_x; sx++) {
if (m_tile[sy * m_width + sx] != color)
goto done;
}
}
done:
sh = sy - y;
// Save properties of this subrect
*colorsPtr++ = color;
*coordsPtr++ = (rdr::U8)((x << 4) | (y & 0x0F));
*coordsPtr++ = (rdr::U8)(((sw - 1) << 4) | ((sh - 1) & 0x0F));
if (m_pal.insert(color, 1) == 0) {
// Handle palette overflow
m_flags = hextileRaw;
m_size = 0;
return;
}
m_numSubrects++;
// Mark pixels of this subrect as processed, below this row
for (sy = y + 1; sy < y + sh; sy++) {
for (sx = x; sx < x + sw; sx++)
m_processed[sy][sx] = true;
}
// Skip processed pixels of this row
x += (sw - 1);
}
}
// Save number of colors in this tile (should be no less than 2)
int numColors = m_pal.getNumColors();
assert(numColors >= 2);
m_background = (PIXEL_T)m_pal.getEntry(0);
m_flags = hextileAnySubrects;
int numSubrects = m_numSubrects - m_pal.getCount(0);
if (numColors == 2) {
// Monochrome tile
m_foreground = (PIXEL_T)m_pal.getEntry(1);
m_size = 1 + 2 * numSubrects;
} else {
// Colored tile
m_flags |= hextileSubrectsColoured;
m_size = 1 + (2 + (BPP/8)) * numSubrects;
}
}
void HEXTILE_TILE::encode(rdr::U8 *dst) const
{
assert(m_numSubrects && (m_flags & hextileAnySubrects));
// Zero subrects counter
rdr::U8 *numSubrectsPtr = dst;
*dst++ = 0;
for (int i = 0; i < m_numSubrects; i++) {
if (m_colors[i] == m_background)
continue;
if (m_flags & hextileSubrectsColoured) {
#if (BPP == 8)
*dst++ = m_colors[i];
#elif (BPP == 16)
*dst++ = ((rdr::U8*)&m_colors[i])[0];
*dst++ = ((rdr::U8*)&m_colors[i])[1];
#elif (BPP == 32)
*dst++ = ((rdr::U8*)&m_colors[i])[0];
*dst++ = ((rdr::U8*)&m_colors[i])[1];
*dst++ = ((rdr::U8*)&m_colors[i])[2];
*dst++ = ((rdr::U8*)&m_colors[i])[3];
#endif
}
*dst++ = m_coords[i * 2];
*dst++ = m_coords[i * 2 + 1];
(*numSubrectsPtr)++;
}
assert(dst - numSubrectsPtr == m_size);
}
//
// Main encoding function.
//
void HEXTILE_ENCODE(const Rect& r, rdr::OutStream* os
#ifdef EXTRA_ARGS
, EXTRA_ARGS
#endif
)
{
Rect t;
PIXEL_T buf[256];
PIXEL_T oldBg = 0, oldFg = 0;
bool oldBgValid = false;
bool oldFgValid = false;
rdr::U8 encoded[256*(BPP/8)];
HEXTILE_TILE tile;
for (t.tl.y = r.tl.y; t.tl.y < r.br.y; t.tl.y += 16) {
t.br.y = __rfbmin(r.br.y, t.tl.y + 16);
for (t.tl.x = r.tl.x; t.tl.x < r.br.x; t.tl.x += 16) {
t.br.x = __rfbmin(r.br.x, t.tl.x + 16);
GET_IMAGE_INTO_BUF(t,buf);
tile.newTile(buf, t.width(), t.height());
int tileType = tile.getFlags();
int encodedLen = tile.getSize();
if ( (tileType & hextileRaw) != 0 ||
encodedLen >= t.width() * t.height() * (BPP/8)) {
os->writeU8(hextileRaw);
os->writeBytes(buf, t.width() * t.height() * (BPP/8));
oldBgValid = oldFgValid = false;
continue;
}
PIXEL_T bg = tile.getBackground();
PIXEL_T fg = 0;
if (!oldBgValid || oldBg != bg) {
tileType |= hextileBgSpecified;
oldBg = bg;
oldBgValid = true;
}
if (tileType & hextileAnySubrects) {
if (tileType & hextileSubrectsColoured) {
oldFgValid = false;
} else {
fg = tile.getForeground();
if (!oldFgValid || oldFg != fg) {
tileType |= hextileFgSpecified;
oldFg = fg;
oldFgValid = true;
}
}
tile.encode(encoded);
}
os->writeU8(tileType);
if (tileType & hextileBgSpecified) os->WRITE_PIXEL(bg);
if (tileType & hextileFgSpecified) os->WRITE_PIXEL(fg);
if (tileType & hextileAnySubrects) os->writeBytes(encoded, encodedLen);
}
}
}
#undef PIXEL_T
#undef WRITE_PIXEL
#undef HEXTILE_TILE
#undef HEXTILE_ENCODE
}
|