1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
package com.tightvnc.decoder;
import com.tightvnc.decoder.common.Repaintable;
import com.tightvnc.vncviewer.RfbInputStream;
import java.awt.Graphics;
import java.awt.Color;
import java.awt.Image;
import java.awt.Rectangle;
import java.awt.Toolkit;
import java.awt.image.ImageObserver;
import java.util.zip.Inflater;
//
// Class that used for decoding Tight encoded data.
//
public class TightDecoder extends RawDecoder implements ImageObserver {
final static int EncodingTight = 7;
//
// Tight decoder constants
//
final static int TightExplicitFilter = 0x04;
final static int TightFill = 0x08;
final static int TightJpeg = 0x09;
final static int TightMaxSubencoding = 0x09;
final static int TightFilterCopy = 0x00;
final static int TightFilterPalette = 0x01;
final static int TightFilterGradient = 0x02;
final static int TightMinToCompress = 12;
// Tight encoder's data.
final static int tightZlibBufferSize = 512;
public TightDecoder(Graphics g, RfbInputStream is) {
super(g, is);
tightInflaters = new Inflater[4];
}
public TightDecoder(Graphics g, RfbInputStream is, int frameBufferW,
int frameBufferH) {
super(g, is, frameBufferW, frameBufferH);
tightInflaters = new Inflater[4];
}
//
// Set and get methods for private TightDecoder
//
public void setRepainableControl(Repaintable r) {
repainatableControl = r;
}
//
// JPEG processing statistic methods
//
public int getNumJPEGRects() {
return statNumRectsTightJPEG;
}
public void setNumJPEGRects(int v) {
statNumRectsTightJPEG = v;
}
//
// Handle a Tight-encoded rectangle.
//
public void handleRect(int x, int y, int w, int h) throws Exception {
//
// Write encoding ID to record output stream
//
if (dos != null) {
dos.writeInt(TightDecoder.EncodingTight);
}
int comp_ctl = rfbis.readU8();
if (rec.canWrite()) {
if (rec.isRecordFromBeginning() ||
comp_ctl == (TightFill << 4) ||
comp_ctl == (TightJpeg << 4)) {
// Send data exactly as received.
rec.writeByte(comp_ctl);
} else {
// Tell the decoder to flush each of the four zlib streams.
rec.writeByte(comp_ctl | 0x0F);
}
}
// Flush zlib streams if we are told by the server to do so.
for (int stream_id = 0; stream_id < 4; stream_id++) {
if ((comp_ctl & 1) != 0 && tightInflaters[stream_id] != null) {
tightInflaters[stream_id] = null;
}
comp_ctl >>= 1;
}
// Check correctness of subencoding value.
if (comp_ctl > TightDecoder.TightMaxSubencoding) {
throw new Exception("Incorrect tight subencoding: " + comp_ctl);
}
// Handle solid-color rectangles.
if (comp_ctl == TightDecoder.TightFill) {
if (bytesPerPixel == 1) {
int idx = rfbis.readU8();
graphics.setColor(getColor256()[idx]);
if (rec.canWrite()) {
rec.writeByte(idx);
}
} else {
byte[] buf = new byte[3];
rfbis.readFully(buf);
if (rec.canWrite()) {
rec.write(buf);
}
Color bg = new Color(0xFF000000 | (buf[0] & 0xFF) << 16 |
(buf[1] & 0xFF) << 8 | (buf[2] & 0xFF));
graphics.setColor(bg);
}
graphics.fillRect(x, y, w, h);
repainatableControl.scheduleRepaint(x, y, w, h);
return;
}
if (comp_ctl == TightDecoder.TightJpeg) {
statNumRectsTightJPEG++;
// Read JPEG data.
byte[] jpegData = new byte[rfbis.readCompactLen()];
rfbis.readFully(jpegData);
if (rec.canWrite()) {
if (!rec.isRecordFromBeginning()) {
rec.recordCompactLen(jpegData.length);
}
rec.write(jpegData);
}
// Create an Image object from the JPEG data.
Image jpegImage = Toolkit.getDefaultToolkit().createImage(jpegData);
// Remember the rectangle where the image should be drawn.
jpegRect = new Rectangle(x, y, w, h);
// Let the imageUpdate() method do the actual drawing, here just
// wait until the image is fully loaded and drawn.
synchronized(jpegRect) {
Toolkit.getDefaultToolkit().prepareImage(jpegImage, -1, -1, this);
try {
// Wait no longer than three seconds.
jpegRect.wait(3000);
} catch (InterruptedException e) {
throw new Exception("Interrupted while decoding JPEG image");
}
}
// Done, jpegRect is not needed any more.
jpegRect = null;
return;
}
// Read filter id and parameters.
int numColors = 0, rowSize = w;
byte[] palette8 = new byte[2];
int[] palette24 = new int[256];
boolean useGradient = false;
if ((comp_ctl & TightDecoder.TightExplicitFilter) != 0) {
int filter_id = rfbis.readU8();
if (rec.canWrite()) {
rec.writeByte(filter_id);
}
if (filter_id == TightDecoder.TightFilterPalette) {
numColors = rfbis.readU8() + 1;
if (rec.canWrite()) {
rec.writeByte((numColors - 1));
}
if (bytesPerPixel == 1) {
if (numColors != 2) {
throw new Exception("Incorrect tight palette size: " + numColors);
}
rfbis.readFully(palette8);
if (rec.canWrite()) {
rec.write(palette8);
}
} else {
byte[] buf = new byte[numColors * 3];
rfbis.readFully(buf);
if (rec.canWrite()) {
rec.write(buf);
}
for (int i = 0; i < numColors; i++) {
palette24[i] = ((buf[i * 3] & 0xFF) << 16 |
(buf[i * 3 + 1] & 0xFF) << 8 |
(buf[i * 3 + 2] & 0xFF));
}
}
if (numColors == 2) {
rowSize = (w + 7) / 8;
}
} else if (filter_id == TightDecoder.TightFilterGradient) {
useGradient = true;
} else if (filter_id != TightDecoder.TightFilterCopy) {
throw new Exception("Incorrect tight filter id: " + filter_id);
}
}
if (numColors == 0 && bytesPerPixel == 4)
rowSize *= 3;
// Read, optionally uncompress and decode data.
int dataSize = h * rowSize;
if (dataSize < TightDecoder.TightMinToCompress) {
// Data size is small - not compressed with zlib.
if (numColors != 0) {
// Indexed colors.
byte[] indexedData = new byte[dataSize];
rfbis.readFully(indexedData);
if (rec.canWrite()) {
rec.write(indexedData);
}
if (numColors == 2) {
// Two colors.
if (bytesPerPixel == 1) {
decodeMonoData(x, y, w, h, indexedData, palette8);
} else {
decodeMonoData(x, y, w, h, indexedData, palette24);
}
} else {
// 3..255 colors (assuming bytesPixel == 4).
int i = 0;
for (int dy = y; dy < y + h; dy++) {
for (int dx = x; dx < x + w; dx++) {
pixels24[dy * framebufferWidth + dx] =
palette24[indexedData[i++] & 0xFF];
}
}
}
} else if (useGradient) {
// "Gradient"-processed data
byte[] buf = new byte[w * h * 3];
rfbis.readFully(buf);
if (rec.canWrite()) {
rec.write(buf);
}
decodeGradientData(x, y, w, h, buf);
} else {
// Raw truecolor data.
if (bytesPerPixel == 1) {
for (int dy = y; dy < y + h; dy++) {
rfbis.readFully(pixels8, dy * framebufferWidth + x, w);
if (rec.canWrite()) {
rec.write(pixels8, dy * framebufferWidth + x, w);
}
}
} else {
byte[] buf = new byte[w * 3];
int i, offset;
for (int dy = y; dy < y + h; dy++) {
rfbis.readFully(buf);
if (rec.canWrite()) {
rec.write(buf);
}
offset = dy * framebufferWidth + x;
for (i = 0; i < w; i++) {
pixels24[offset + i] =
(buf[i * 3] & 0xFF) << 16 |
(buf[i * 3 + 1] & 0xFF) << 8 |
(buf[i * 3 + 2] & 0xFF);
}
}
}
}
} else {
// Data was compressed with zlib.
int zlibDataLen = rfbis.readCompactLen();
byte[] zlibData = new byte[zlibDataLen];
rfbis.readFully(zlibData);
if ( (rec.canWrite()) && (rec.isRecordFromBeginning()) ) {
rec.write(zlibData);
}
int stream_id = comp_ctl & 0x03;
if (tightInflaters[stream_id] == null) {
tightInflaters[stream_id] = new Inflater();
}
Inflater myInflater = tightInflaters[stream_id];
myInflater.setInput(zlibData);
byte[] buf = new byte[dataSize];
myInflater.inflate(buf);
if ( (rec.canWrite()) && (!rec.isRecordFromBeginning()) ) {
rec.recordCompressedData(buf);
}
if (numColors != 0) {
// Indexed colors.
if (numColors == 2) {
// Two colors.
if (bytesPerPixel == 1) {
decodeMonoData(x, y, w, h, buf, palette8);
} else {
decodeMonoData(x, y, w, h, buf, palette24);
}
} else {
// More than two colors (assuming bytesPixel == 4).
int i = 0;
for (int dy = y; dy < y + h; dy++) {
for (int dx = x; dx < x + w; dx++) {
pixels24[dy * framebufferWidth + dx] =
palette24[buf[i++] & 0xFF];
}
}
}
} else if (useGradient) {
// Compressed "Gradient"-filtered data (assuming bytesPixel == 4).
decodeGradientData(x, y, w, h, buf);
} else {
// Compressed truecolor data.
if (bytesPerPixel == 1) {
int destOffset = y * framebufferWidth + x;
for (int dy = 0; dy < h; dy++) {
System.arraycopy(buf, dy * w, pixels8, destOffset, w);
destOffset += framebufferWidth;
}
} else {
int srcOffset = 0;
int destOffset, i;
for (int dy = 0; dy < h; dy++) {
myInflater.inflate(buf);
destOffset = (y + dy) * framebufferWidth + x;
for (i = 0; i < w; i++) {
RawDecoder.pixels24[destOffset + i] =
(buf[srcOffset] & 0xFF) << 16 |
(buf[srcOffset + 1] & 0xFF) << 8 |
(buf[srcOffset + 2] & 0xFF);
srcOffset += 3;
}
}
}
}
}
handleUpdatedPixels(x, y, w, h);
}
//
// Decode 1bpp-encoded bi-color rectangle (8-bit and 24-bit versions).
//
private void decodeMonoData(int x, int y, int w, int h, byte[] src, byte[] palette) {
int dx, dy, n;
int i = y * framebufferWidth + x;
int rowBytes = (w + 7) / 8;
byte b;
for (dy = 0; dy < h; dy++) {
for (dx = 0; dx < w / 8; dx++) {
b = src[dy*rowBytes+dx];
for (n = 7; n >= 0; n--)
pixels8[i++] = palette[b >> n & 1];
}
for (n = 7; n >= 8 - w % 8; n--) {
pixels8[i++] = palette[src[dy*rowBytes+dx] >> n & 1];
}
i += (framebufferWidth - w);
}
}
private void decodeMonoData(int x, int y, int w, int h, byte[] src, int[] palette) {
int dx, dy, n;
int i = y * framebufferWidth + x;
int rowBytes = (w + 7) / 8;
byte b;
for (dy = 0; dy < h; dy++) {
for (dx = 0; dx < w / 8; dx++) {
b = src[dy*rowBytes+dx];
for (n = 7; n >= 0; n--)
pixels24[i++] = palette[b >> n & 1];
}
for (n = 7; n >= 8 - w % 8; n--) {
pixels24[i++] = palette[src[dy*rowBytes+dx] >> n & 1];
}
i += (framebufferWidth - w);
}
}
//
// Decode data processed with the "Gradient" filter.
//
private void decodeGradientData (int x, int y, int w, int h, byte[] buf) {
int dx, dy, c;
byte[] prevRow = new byte[w * 3];
byte[] thisRow = new byte[w * 3];
byte[] pix = new byte[3];
int[] est = new int[3];
int offset = y * framebufferWidth + x;
for (dy = 0; dy < h; dy++) {
/* First pixel in a row */
for (c = 0; c < 3; c++) {
pix[c] = (byte)(prevRow[c] + buf[dy * w * 3 + c]);
thisRow[c] = pix[c];
}
pixels24[offset++] =
(pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF);
/* Remaining pixels of a row */
for (dx = 1; dx < w; dx++) {
for (c = 0; c < 3; c++) {
est[c] = ((prevRow[dx * 3 + c] & 0xFF) + (pix[c] & 0xFF) -
(prevRow[(dx-1) * 3 + c] & 0xFF));
if (est[c] > 0xFF) {
est[c] = 0xFF;
} else if (est[c] < 0x00) {
est[c] = 0x00;
}
pix[c] = (byte)(est[c] + buf[(dy * w + dx) * 3 + c]);
thisRow[dx * 3 + c] = pix[c];
}
pixels24[offset++] =
(pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF);
}
System.arraycopy(thisRow, 0, prevRow, 0, w * 3);
offset += (framebufferWidth - w);
}
}
//
// Override the ImageObserver interface method to handle drawing of
// JPEG-encoded data.
//
public boolean imageUpdate(Image img, int infoflags,
int x, int y, int width, int height) {
if ((infoflags & (ALLBITS | ABORT)) == 0) {
return true; // We need more image data.
} else {
// If the whole image is available, draw it now.
if ((infoflags & ALLBITS) != 0) {
if (jpegRect != null) {
synchronized(jpegRect) {
graphics.drawImage(img, jpegRect.x, jpegRect.y, null);
repainatableControl.scheduleRepaint(jpegRect.x, jpegRect.y,
jpegRect.width, jpegRect.height);
jpegRect.notify();
}
}
}
return false; // All image data was processed.
}
}
//
// Private members
//
private Inflater[] tightInflaters;
// Since JPEG images are loaded asynchronously, we have to remember
// their position in the framebuffer. Also, this jpegRect object is
// used for synchronization between the rfbThread and a JVM's thread
// which decodes and loads JPEG images.
private Rectangle jpegRect;
private Repaintable repainatableControl = null;
// Jpeg decoding statistics
private int statNumRectsTightJPEG = 0;
}
|