1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
package com.tightvnc.decoder;
import com.tightvnc.decoder.common.Repaintable;
import com.tightvnc.vncviewer.RfbInputStream;
import java.awt.Graphics;
import java.awt.Color;
import java.awt.Image;
import java.awt.Rectangle;
import java.awt.Toolkit;
import java.awt.image.ImageObserver;
import java.util.zip.Inflater;
//
// Class that used for decoding Tight encoded data.
//
public class TightDecoder extends RawDecoder {
//
// Tight decoder constants
//
final static int TightExplicitFilter = 0x04;
final static int TightFill = 0x08;
final static int TightJpeg = 0x09;
final static int TightMaxSubencoding = 0x09;
final static int TightFilterCopy = 0x00;
final static int TightFilterPalette = 0x01;
final static int TightFilterGradient = 0x02;
final static int TightMinToCompress = 12;
// Tight encoder's data.
final static int tightZlibBufferSize = 512;
public TightDecoder(Graphics g, RfbInputStream is) {
super(g, is);
tightInflaters = new Inflater[4];
}
public TightDecoder(Graphics g, RfbInputStream is, int frameBufferW,
int frameBufferH) {
super(g, is, frameBufferW, frameBufferH);
tightInflaters = new Inflater[4];
}
//
// Set and get methods for private TightDecoder
//
public void setRepainableControl(Repaintable r) {
repainatableControl = r;
}
//
// JPEG processing statistic methods
//
public int getNumJPEGRects() {
return statNumRectsTightJPEG;
}
public void setNumJPEGRects(int v) {
statNumRectsTightJPEG = v;
}
//
// Decode 1bpp-encoded bi-color rectangle (8-bit and 24-bit versions).
//
private void decodeMonoData(int x, int y, int w, int h, byte[] src, byte[] palette) {
int dx, dy, n;
int i = y * framebufferWidth + x;
int rowBytes = (w + 7) / 8;
byte b;
for (dy = 0; dy < h; dy++) {
for (dx = 0; dx < w / 8; dx++) {
b = src[dy*rowBytes+dx];
for (n = 7; n >= 0; n--)
pixels8[i++] = palette[b >> n & 1];
}
for (n = 7; n >= 8 - w % 8; n--) {
pixels8[i++] = palette[src[dy*rowBytes+dx] >> n & 1];
}
i += (framebufferWidth - w);
}
}
private void decodeMonoData(int x, int y, int w, int h, byte[] src, int[] palette) {
int dx, dy, n;
int i = y * framebufferWidth + x;
int rowBytes = (w + 7) / 8;
byte b;
for (dy = 0; dy < h; dy++) {
for (dx = 0; dx < w / 8; dx++) {
b = src[dy*rowBytes+dx];
for (n = 7; n >= 0; n--)
pixels24[i++] = palette[b >> n & 1];
}
for (n = 7; n >= 8 - w % 8; n--) {
pixels24[i++] = palette[src[dy*rowBytes+dx] >> n & 1];
}
i += (framebufferWidth - w);
}
}
//
// Decode data processed with the "Gradient" filter.
//
private void decodeGradientData (int x, int y, int w, int h, byte[] buf) {
int dx, dy, c;
byte[] prevRow = new byte[w * 3];
byte[] thisRow = new byte[w * 3];
byte[] pix = new byte[3];
int[] est = new int[3];
int offset = y * framebufferWidth + x;
for (dy = 0; dy < h; dy++) {
/* First pixel in a row */
for (c = 0; c < 3; c++) {
pix[c] = (byte)(prevRow[c] + buf[dy * w * 3 + c]);
thisRow[c] = pix[c];
}
pixels24[offset++] =
(pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF);
/* Remaining pixels of a row */
for (dx = 1; dx < w; dx++) {
for (c = 0; c < 3; c++) {
est[c] = ((prevRow[dx * 3 + c] & 0xFF) + (pix[c] & 0xFF) -
(prevRow[(dx-1) * 3 + c] & 0xFF));
if (est[c] > 0xFF) {
est[c] = 0xFF;
} else if (est[c] < 0x00) {
est[c] = 0x00;
}
pix[c] = (byte)(est[c] + buf[(dy * w + dx) * 3 + c]);
thisRow[dx * 3 + c] = pix[c];
}
pixels24[offset++] =
(pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF);
}
System.arraycopy(thisRow, 0, prevRow, 0, w * 3);
offset += (framebufferWidth - w);
}
}
//
// Private members
//
private Inflater[] tightInflaters;
// Since JPEG images are loaded asynchronously, we have to remember
// their position in the framebuffer. Also, this jpegRect object is
// used for synchronization between the rfbThread and a JVM's thread
// which decodes and loads JPEG images.
private Rectangle jpegRect;
private Repaintable repainatableControl = null;
// Jpeg decoding statistics
private int statNumRectsTightJPEG = 0;
}
|