1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
/*
* Copyright 2004-2005 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* $Id$ */
package org.apache.fop.layoutmgr;
import java.util.List;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.fop.traits.MinOptMax;
/**
* A knuth paragraph
*
* The set is sorted into lines indexed into activeLines.
* The nodes in each line is linked together in a single linked list by the
* KnuthNode.next field. The activeLines array contains a link to the head of
* the linked list in index 'line*2' and a link to the tail at index 'line*2+1'.
* <p>
* The set of active nodes can be traversed by
* <pre>
* for (int line = startLine; line < endLine; line++) {
* for (KnuthNode node = getNode(line); node != null; node = node.next) {
* // Do something with 'node'
* }
* }
* </pre>
*/
public class KnuthParagraph {
// parameters of Knuth's algorithm:
// penalty value for flagged penalties
private int flaggedPenalty = 50;
// demerit for consecutive lines ending at flagged penalties
private int repeatedFlaggedDemerit = 50;
// demerit for consecutive lines belonging to incompatible fitness classes
private int incompatibleFitnessDemerit = 50;
// suggested modification to the "optimum" number of lines
private int looseness = 0;
/**
* The threshold for considering breaks to be acceptable.
*/
private double threshold;
/**
* The paragraph of KnuthElements.
*/
private List par;
/**
* The width of a line.
*/
private int lineWidth = 0;
private boolean force = false;
private KnuthNode lastTooLong;
private KnuthNode lastTooShort;
private KnuthNode lastDeactivated;
/**
* The set of active nodes.
*/
private KnuthNode[] activeLines;
/**
* The number of active nodes.
*/
private int activeNodeCount;
/**
* The lowest available line in the set of active nodes.
*/
private int startLine = 0;
/**
* The highest + 1 available line in the set of active nodes.
*/
private int endLine = 0;
/**
* The total width of all elements handled so far.
*/
private int totalWidth;
/**
* The total stretch of all elements handled so far.
*/
private int totalStretch = 0;
/**
* The total shrink of all elements handled so far.
*/
private int totalShrink = 0;
private BestRecords best;
private KnuthNode[] positions;
private static final int INFINITE_RATIO = 1000;
protected static Log log = LogFactory.getLog(KnuthParagraph.class);
public KnuthParagraph(List par) {
this.best = new BestRecords();
this.par = par;
}
// this class represent a feasible breaking point
private class KnuthNode {
// index of the breakpoint represented by this node
public int position;
// number of the line ending at this breakpoint
public int line;
// fitness class of the line ending at his breakpoint
public int fitness;
// accumulated width of the KnuthElements
public int totalWidth;
public int totalStretch;
public int totalShrink;
// adjustment ratio if the line ends at this breakpoint
public double adjustRatio;
// difference between target and actual line width
public int difference;
// minimum total demerits up to this breakpoint
public double totalDemerits;
// best node for the preceding breakpoint
public KnuthNode previous;
// Next possible node in the same line
public KnuthNode next;
public KnuthNode(int position, int line, int fitness,
int totalWidth, int totalStretch, int totalShrink,
double adjustRatio, int difference,
double totalDemerits, KnuthNode previous) {
this.position = position;
this.line = line;
this.fitness = fitness;
this.totalWidth = totalWidth;
this.totalStretch = totalStretch;
this.totalShrink = totalShrink;
this.adjustRatio = adjustRatio;
this.difference = difference;
this.totalDemerits = totalDemerits;
this.previous = previous;
}
public String toString() {
return "<KnuthNode at " + position + " " +
totalWidth + "+" + totalStretch + "-" + totalShrink +
" line:" + line +
" prev:" + (previous != null ? previous.position : -1) +
" dem:" + totalDemerits +
">";
}
}
// this class stores information about how the nodes
// which could start a line
// ending at the current element
private class BestRecords {
private static final double INFINITE_DEMERITS = Double.POSITIVE_INFINITY;
private double bestDemerits[] = new double[4];
private KnuthNode bestNode[] = new KnuthNode[4];
private double bestAdjust[] = new double[4];
private int bestDifference[] = new int[4];
private int bestIndex = -1;
public BestRecords() {
reset();
}
public void addRecord(double demerits, KnuthNode node, double adjust,
int difference, int fitness) {
if (demerits > bestDemerits[fitness]) {
log.error("New demerits value greter than the old one");
}
bestDemerits[fitness] = demerits;
bestNode[fitness] = node;
bestAdjust[fitness] = adjust;
bestDifference[fitness] = difference;
if (bestIndex == -1 || demerits < bestDemerits[bestIndex]) {
bestIndex = fitness;
}
}
public boolean hasRecords() {
return (bestIndex != -1);
}
public boolean notInfiniteDemerits(int fitness) {
return (bestDemerits[fitness] != INFINITE_DEMERITS);
}
public double getDemerits(int fitness) {
return bestDemerits[fitness];
}
public KnuthNode getNode(int fitness) {
return bestNode[fitness];
}
public double getAdjust(int fitness) {
return bestAdjust[fitness];
}
public int getDifference(int fitness) {
return bestDifference[fitness];
}
public double getMinDemerits() {
if (bestIndex != -1) {
return getDemerits(bestIndex);
} else {
// anyway, this should never happen
return INFINITE_DEMERITS;
}
}
public void reset() {
bestDemerits[0] = INFINITE_DEMERITS;
bestDemerits[1] = INFINITE_DEMERITS;
bestDemerits[2] = INFINITE_DEMERITS;
bestDemerits[3] = INFINITE_DEMERITS;
bestIndex = -1;
}
}
public int findBreakPoints(int lineWidth, double threshold, boolean force) {
this.lineWidth = lineWidth;
this.totalWidth = 0;
this.totalStretch = 0;
this.totalShrink = 0;
this.threshold = threshold;
this.force = force;
activeLines = new KnuthNode[20];
addNode(0, new KnuthNode(0, 0, 1, 0, 0, 0, 0, 0, 0, null));
boolean bForced = false;
// previous element in the paragraph is a KnuthBox
boolean previousIsBox = false;
if (log.isTraceEnabled()) {
log.trace("Looping over " + par.size() + " box objects");
}
KnuthNode lastForced = getNode(0);
// main loop
for (int i = 0; i < par.size(); i++) {
KnuthElement element = getElement(i);
if (element.isBox()) {
// a KnuthBox object is not a legal line break
totalWidth += element.getW();
previousIsBox = true;
} else if (element.isGlue()) {
// a KnuthGlue object is a legal line break
// only if the previous object is a KnuthBox
if (previousIsBox) {
considerLegalBreak(element, i);
}
totalWidth += element.getW();
totalStretch += element.getY();
totalShrink += element.getZ();
previousIsBox = false;
} else {
// a KnuthPenalty is a legal line break
// only if its penalty is not infinite
if (element.getP() < KnuthElement.INFINITE) {
considerLegalBreak(element, i);
}
previousIsBox = false;
}
if (activeNodeCount == 0) {
if (!force) {
log.debug("Could not find a set of breaking points " + threshold);
return 0;
}
/*
if (lastForced != null && lastForced.position == lastDeactivated.position) {
lastForced = lastTooShort != null ? lastTooShort : lastTooLong;
} else {
lastForced = lastDeactivated;
}
*/
if (lastTooShort == null || lastForced.position == lastTooShort.position) {
lastForced = lastTooLong;
} else {
lastForced = lastTooShort;
}
log.debug("Restarting at node " + lastForced);
lastForced.totalDemerits = 0;
addNode(lastForced.line, lastForced);
i = lastForced.position;
startLine = lastForced.line;
endLine = startLine + 1;
totalWidth = lastForced.totalWidth;
totalStretch = lastForced.totalStretch;
totalShrink = lastForced.totalShrink;
lastTooShort = lastTooLong = null;
}
}
if (log.isTraceEnabled()) {
log.trace("Main loop completed " + activeNodeCount);
log.trace("Active nodes=" + toString(""));
}
// there is at least one set of breaking points
// choose the active node with fewest total demerits
KnuthNode bestActiveNode = findBestNode();
int line = bestActiveNode.line;
/*
if (looseness != 0) {
// choose the appropriate active node
int s = 0;
double bestDemerits = 0;
for (int i = 0; i < activeList.size(); i++) {
KnuthNode node = getNode(i);
int delta = node.line - line;
if (looseness <= delta && delta < s
|| s < delta && delta <= looseness) {
s = delta;
bestActiveNode = node;
bestDemerits = node.totalDemerits;
} else if (delta == s
&& node.totalDemerits < bestDemerits) {
bestActiveNode = node;
bestDemerits = node.totalDemerits;
}
}
line = bestActiveNode.line;
}
*/
// Reverse the list of nodes from bestActiveNode.
positions = new KnuthNode[line];
// use the chosen node to determine the optimum breakpoints
for (int i = line - 1; i >= 0; i--) {
positions[i] = bestActiveNode;
bestActiveNode = bestActiveNode.previous;
}
activeLines = null;
return positions.length;
}
private void considerLegalBreak(KnuthElement element, int elementIdx) {
if (log.isTraceEnabled()) {
log.trace("Feasible breakpoint at " + par.indexOf(element) + " " + totalWidth + "+" + totalStretch + "-" + totalShrink);
log.trace("\tCurrent active node list: " + activeNodeCount + " " + this.toString("\t"));
}
lastDeactivated = null;
lastTooLong = null;
for (int line = startLine; line < endLine; line++) {
for (KnuthNode node = getNode(line); node != null; node = node.next) {
if (node.position == elementIdx) {
continue;
}
int difference = computeDifference(node, element);
double r = computeAdjustmentRatio(node, difference);
if (log.isTraceEnabled()) {
log.trace("\tr=" + r);
log.trace("\tline=" + line);
}
// The line would be too long.
if (r < -1 || element.isForcedBreak()) {
// Deactivate node.
if (log.isTraceEnabled()) {
log.trace("Removing " + node);
}
removeNode(line, node);
lastDeactivated = compareNodes(lastDeactivated, node);
}
// The line is within the available shrink and the threshold.
if (r >= -1 && r <= threshold) {
int fitnessClass = computeFitness(r);
double demerits = computeDemerits(node, element, fitnessClass, r);
if (log.isTraceEnabled()) {
log.trace("\tDemerits=" + demerits);
log.trace("\tFitness class=" + fitnessClass);
}
if (demerits < best.getDemerits(fitnessClass)) {
// updates best demerits data
best.addRecord(demerits, node, r, difference, fitnessClass);
}
}
// The line is way too short, but we are in forcing mode, so a node is
// calculated and stored in lastValidNode.
if (force && (r <= -1 || r > threshold)) {
int fitnessClass = computeFitness(r);
double demerits = computeDemerits(node, element, fitnessClass, r);
if (r <= -1) {
if (lastTooLong == null || demerits < lastTooLong.totalDemerits) {
lastTooLong = new KnuthNode(elementIdx, line + 1, fitnessClass,
totalWidth, totalStretch, totalShrink,
r, difference, demerits, node);
if (log.isTraceEnabled()) {
log.trace("Picking tooLong " + lastTooLong);
}
}
} else {
if (lastTooShort == null || demerits <= lastTooShort.totalDemerits) {
lastTooShort = new KnuthNode(elementIdx, line + 1, fitnessClass,
totalWidth, totalStretch, totalShrink,
r, difference, demerits, node);
if (log.isTraceEnabled()) {
log.trace("Picking tooShort " + lastTooShort);
}
}
}
}
}
addBreaks(line, elementIdx);
}
}
private void addBreaks(int line, int elementIdx) {
if (!best.hasRecords()) {
return;
}
int newWidth = totalWidth;
int newStretch = totalStretch;
int newShrink = totalShrink;
for (int i = elementIdx; i < par.size(); i++) {
KnuthElement tempElement = getElement(i);
if (tempElement.isBox()) {
break;
} else if (tempElement.isGlue()) {
newWidth += tempElement.getW();
newStretch += tempElement.getY();
newShrink += tempElement.getZ();
} else if (tempElement.isForcedBreak() && i != elementIdx) {
break;
}
}
// add nodes to the active nodes list
double minimumDemerits = best.getMinDemerits() + incompatibleFitnessDemerit;
for (int i = 0; i <= 3; i++) {
if (best.notInfiniteDemerits(i) && best.getDemerits(i) <= minimumDemerits) {
// the nodes in activeList must be ordered
// by line number and position;
if (log.isTraceEnabled()) {
log.trace("\tInsert new break in list of " + activeNodeCount);
}
KnuthNode newNode = new KnuthNode(elementIdx, line + 1, i,
newWidth, newStretch, newShrink,
best.getAdjust(i),
best.getDifference(i),
best.getDemerits(i),
best.getNode(i));
addNode(line + 1, newNode);
}
}
best.reset();
}
/**
* Return the difference between the line width and the width of the break that
* ends in 'element'.
* @param activeNode
* @param element
* @return The difference in width. Positive numbers mean extra space in the line,
* negative number that the line overflows.
*/
private int computeDifference(KnuthNode activeNode, KnuthElement element) {
// compute the adjustment ratio
int actualWidth = totalWidth - activeNode.totalWidth;
if (element.isPenalty()) {
actualWidth += element.getW();
}
return lineWidth - actualWidth;
}
/**
* Return the adjust ration needed to make up for the difference. A ration of
* <ul>
* <li>0 means that the break has the exact right width</li>
* <li>>= -1 && < 0 means that the break is to wider than the line,
* but within the minimim values of the glues.</li>
* <li>>0 && < 1 means that the break is smaller than the line width,
* but within the maximum values of the glues.</li>
* <li>> 1 means that the break is too small to make up for the glues.</li>
* </ul>
* @param activeNode
* @param difference
* @return The ration.
*/
private double computeAdjustmentRatio(KnuthNode activeNode, int difference) {
// compute the adjustment ratio
if (difference > 0) {
int maxAdjustment = totalStretch - activeNode.totalStretch;
if (maxAdjustment > 0) {
return (double) difference / maxAdjustment;
} else {
return INFINITE_RATIO;
}
} else if (difference < 0) {
int maxAdjustment = totalShrink - activeNode.totalShrink;
if (maxAdjustment > 0) {
return (double) difference / maxAdjustment;
} else {
return -INFINITE_RATIO;
}
} else {
return 0;
}
}
/**
* Figure out the fitness class of this line (tight, loose,
* very tight or very loose).
* @param r
* @return
*/
private int computeFitness(double r) {
int newFitnessClass;
if (r < -0.5) {
return 0;
} else if (r <= 0.5) {
return 1;
} else if (r <= 1) {
return 2;
} else {
return 3;
}
}
/**
* Find and return the KnuthNode in the active set of nodes with the
* lowest demerit.
*/
private KnuthNode findBestNode() {
// choose the active node with fewest total demerits
KnuthNode bestActiveNode = null;
for (int i = startLine; i < endLine; i++) {
for (KnuthNode node = getNode(i); node != null; node = node.next) {
bestActiveNode = compareNodes(bestActiveNode, node);
}
}
if (log.isTraceEnabled()) {
log.trace("Best demerits " + bestActiveNode.totalDemerits + " for paragraph size " + par.size());
}
return bestActiveNode;
}
/**
* Compare two KnuthNodes and return the node with the least demerit.
* @param node1 The first knuth node.
* @param node2 The other knuth node.
* @return
*/
private KnuthNode compareNodes(KnuthNode node1, KnuthNode node2) {
if (node1 == null || node2.position > node1.position) {
return node2;
}
if (node2.position == node1.position) {
if (node2.totalDemerits < node1.totalDemerits) {
return node2;
}
}
return node1;
}
private double computeDemerits(KnuthNode activeNode, KnuthElement element,
int fitnessClass, double r) {
double demerits = 0;
// compute demerits
double f = Math.abs(r);
f = 1 + 100 * f * f * f;
if (element.isPenalty() && element.getP() >= 0) {
f += element.getP();
demerits = f * f;
} else if (element.isPenalty() && !element.isForcedBreak()) {
double penalty = element.getP();
demerits = f * f - penalty * penalty;
} else {
demerits = f * f;
}
if (element.isPenalty() && ((KnuthPenalty) element).isFlagged()
&& getElement(activeNode.position).isPenalty()
&& ((KnuthPenalty) getElement(activeNode.position)).isFlagged()) {
// add demerit for consecutive breaks at flagged penalties
demerits += repeatedFlaggedDemerit;
}
if (Math.abs(fitnessClass - activeNode.fitness) > 1) {
// add demerit for consecutive breaks
// with very different fitness classes
demerits += incompatibleFitnessDemerit;
}
demerits += activeNode.totalDemerits;
return demerits;
}
/**
* Return the element at index idx in the paragraph.
* @param idx index of the element.
* @return
*/
private KnuthElement getElement(int idx) {
return (KnuthElement) par.get(idx);
}
/**
* Add a KnuthNode at the end of line 'line'.
* If this is the first node in the line, adjust endLine accordingly.
* @param line
* @param node
*/
private void addNode(int line, KnuthNode node) {
int headIdx = line * 2;
if (headIdx >= activeLines.length) {
KnuthNode[] oldList = activeLines;
activeLines = new KnuthNode[headIdx + headIdx];
System.arraycopy(oldList, 0, activeLines, 0, oldList.length);
}
node.next = null;
if (activeLines[headIdx + 1] != null) {
activeLines[headIdx + 1].next = node;
} else {
activeLines[headIdx] = node;
endLine = line+1;
}
activeLines[headIdx + 1] = node;
activeNodeCount++;
}
/**
* Remove the first node in line 'line'. If the line then becomes empty, adjust the
* startLine accordingly.
* @param line
* @param node
*/
private void removeNode(int line, KnuthNode node) {
KnuthNode n = getNode(line);
if (n != node) {
log.error("Should be first");
} else {
activeLines[line*2] = node.next;
if (node.next == null) {
activeLines[line*2+1] = null;
}
while (startLine < endLine && getNode(startLine) == null) {
startLine++;
}
}
activeNodeCount--;
}
private KnuthNode getNode(int line) {
return activeLines[line * 2];
}
/**
* Return true if the position 'idx' is a legal breakpoint.
* @param idx
* @return
*/
private boolean isLegalBreakpoint(int idx) {
KnuthElement elm = getElement(idx);
if (elm.isPenalty() && elm.getP() != KnuthElement.INFINITE) {
return true;
} else if (idx > 0 && elm.isGlue() && getElement(idx-1).isBox()) {
return true;
} else {
return false;
}
}
public int getDifference(int line) {
return positions[line].difference;
}
public double getAdjustRatio(int line) {
return positions[line].adjustRatio;
}
public int getStart(int line) {
KnuthNode previous = positions[line].previous;
return line == 0 ? 0 : previous.position + 1;
}
public int getEnd(int line) {
return positions[line].position;
}
/**
* Return a string representation of a MinOptMax in the form of a
* "width+stretch-shrink". Useful only for debugging.
* @param mom
* @return
*/
private static String width(MinOptMax mom) {
return mom.opt + "+" + (mom.max - mom.opt) + "-" + (mom.opt - mom.min);
}
public String toString(String prepend) {
StringBuffer sb = new StringBuffer();
sb.append("[\n");
for (int i = startLine; i < endLine; i++) {
for (KnuthNode node = getNode(i); node != null; node = node.next) {
sb.append(prepend + "\t" + node + ",\n");
}
}
sb.append(prepend + "]");
return sb.toString();
}
}
|